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Materials and Methods 
 
Sequencing and read processing 
DNA extracted from lymphoblastoid cell lines was shipped from the CEPH-Biobank at 
Fondation Jean Dausset-CEPH laboratory in Paris, and sequenced at the Wellcome Sanger 
Institute in Hinxton, United Kingdom. PCR libraries were constructed for an initial batch of 
samples (PCR-free library construction was not available for large-scale production at the 
institute at this time), while PCR-free libraries were constructed for the rest. Libraries were 
sequenced on Illumina HiSeq X machines, on single lanes for the PCR libraries and 
multiplexed across 12 lanes for the PCR-free libraries, producing paired-end reads of length 
2×151 base-pairs (bp), a mean insert size of 447 bp and a mean coverage of 35.0X. 14 of 
these libraries were described and used for population genetic analyses in a previous 
publication (13). 
 
Reads were processed through the automated pipeline of the Wellcome Sanger Institute 
sequencing facility, mapping to the GRCh38 reference assembly 
(GRCh38_full_analysis_set_plus_decoy_hla.fa) using bwa mem version 0.7.12 (47) with the 
–T 0 parameter. Tools from the biobambam package (48) were used to trim adaptor 
sequences from reads prior to mapping (bamadapterclip) and to mark duplicate reads after 
mapping (bamstreamingmarkduplicates). We performed no further post-processing of the 
alignments, e.g. base quality recalibration or local indel realignment. 
 
Data previously generated on a subset of the samples from the HGDP-CEPH panel as part of 
the Simons Genome Diversity Project (3) (hereafter referred to as “SGDP”) was also 
incorporated into the project (paired-end reads of length 2×100 bp, mean insert size of 310 
bp, mean coverage of 42.4x). Data from another earlier publication (11) (hereafter referred to 
as “Meyer”) was obtained from ENA experiment accession number SRX103808, de-
multiplexed allowing for one nucleotide mismatch in the barcode sequence and then also 
incorporated (paired-end read lengths of 94+100 bp or 95+101 bp, mean insert size of 264 
bp, mean coverage of 28.7). 
 
Reads from the SGDP and Meyer libraries were processed as the Sanger libraries above, 
except the trimadap tool (https://github.com/lh3/trimadap) was used for adapter trimming, the 
–T 0 parameter to bwa mem was not applied, and the bwa-postalt.js post-processing script 
was run after mapping. 
 
Sample quality control, some of which is described in more detail below, included 
assessments of overall sequencing coverage, read error rates, genotype concordance to 
published genotype array data and cell-line chromosomal artefacts. For a few samples in the 
panel we had more than one library from different sources (i.e. Sanger, SGDP or Meyer, and 
PCR or PCR-free), and in each such case choose to include the library with the highest array 
genotype concordance, but excepting that rule in a few cases to avoid any of the 54 
populations in the panel having an atypical composition of libraries from these different 
sources (for example, having more than the typical two SGDP libraries), when possible. After 
quality control and sample exclusions, the final set of 929 libraries contained 649 Sanger 
PCR-free, 152 Sanger PCR, 111 SGDP PCR-free, 9 SGDP PCR and 8 Meyer PCR libraries 
(table S1). 
 



	 3	

Previously published array genotypes available on the panel were lifted over from hg18 (8) 
and GRCh37 (10) to the GRCh38 assembly using the NCBI Remap tool and through looking 
up rs numbers in dbSNP (49). 
 
 
Capping of mapping qualities 
We noticed that the genotypes called from many of the Sanger PCR-free libraries displayed 
higher rates of discordance with array genotypes from the same individuals than the other 
sample sets, including the Sanger PCR libraries. To test if this could be due to cross-sample 
contamination caused by index hopping in the multiplexed sequencing runs performed for the 
PCR-free libraries, we ran the VerifyBamID tool (50) to estimate a per-library contamination 
rate (the “FREEMIX” estimate). These estimates were higher for many of the Sanger PCR 
libraries (in the highest cases 1-2%), and correlated strongly with the array discordance rate, 
strongly suggesting this was the cause of the reduced genotype accuracy (fig. S1A). 
 
To reduce the impact of the index hopping on genotype accuracy, we applied a per-sample 
cap on the mapping qualities (MAPQ) of reads as a function of the contamination estimate 
(https://github.com/mcshane/capmq): 
 

max 𝑀𝐴𝑃𝑄 = 	max	 20,10 ∙ log23
1

𝐹𝑅𝐸𝐸𝑀𝐼𝑋
 

 
The rationale behind this is that if e.g. 0.1% of the reads are contaminant and do not actually 
derive from the given individual, for any given read we cannot, regardless of how well it has 
aligned to the reference genome, have more than 99.9% confidence that it reflects the 
genome sequence of the individual. We thus express that uncertainty by lowering the 
mapping quality of any read above this confidence level, in this example corresponding to a 
mapping quality of 30. However, we do not set the cap for any sample at lower than 20. 
 
Applying these sample-specific mapping quality caps substantially improved the array 
discordance rate for the Sanger PCR-free libraries, bringing them into the same range as non-
multiplexed libraries (fig. S1B). It also slightly improved the rate for some other libraries. 
One library displayed a very high contamination rate (~4%) and a high array discordance 
even after capping mapping qualities, and was therefore marked as failing quality control and 
excluded from analyses. 
 
 
Cell line copy number alterations 
To identify any large-scale chromosomal copy number changes having occurred during 
culturing of the HGDP-CEPH lymphoblastoid cell lines from which DNA was obtained, we 
studied the mapped read coverage along the chromosomes of each sample. We calculated the 
coverage at approximately 300,000 single positions across the genome, and then plotted 
rolling means of these normalized by the genome-wide median. We visually inspected the 
plots for each sample and identified local deviations from the expected normalized copy 
number. As the cell line is a population of cells, the magnitude of the coverage deviation will 
be proportional to the fraction of the cells carrying the copy number alteration and can thus 
fall anywhere within the continuous range between the expected (1) and the most extreme 
possible values (1.5 in the case of a gain and 0.5 in the case of loss). 
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We marked 66 libraries as displaying at least one instance of mild deviation in coverage 
along a substantial stretch of a chromosome or major deviation in a megabase-sized stretch. 
Most events affected entire chromosomes or chromosome arms, but some smaller events 
were also observed. An especially large number of whole-chromosome gains were observed 
on chromosomes 9 and 12. We considered 9 of these 66 libraries to have deviations that were 
too extreme, informed by a computational experiment described below, and marked these as 
failing quality control. This included one sample (HGDP01097, Tujia) which did not display 
any copy number alterations, but which we discovered was completely homozygous along 
the entire length of chromosome 1 (we confirmed this was also the case in previously 
published genotype array data), most likely reflecting a cell line uniparental disomy event 
(though we cannot rule out that this reflects an actual germline uniparental disomy event in 
the sample donor). While several of the identified cases of unexpected copy number involved 
the sex chromosomes, particularly loss of chromosome Y in males and loss of chromosome X 
in females (fig. S2B), we did not exclude any sample on the basis of sex chromosome 
coverage alone. One self-reported male individual displayed what is likely an actual XXY 
karyotype rather than a cell line alteration. 
 
We performed a computational experiment to assess the effects of coverage deviations on the 
accuracy of genotype calling at small nucleotide variants and determine whether it was 
appropriate to retain samples with mild deviations in our final dataset. We took the reads 
from the haploid chromosome X of two male individuals (HGDP00262 and HGDP00251, 
both Pathan) and subsampled these in varying proportions to generate synthetic diploid 
datasets corresponding to varying levels of coverage imbalance between the two 
chromosomes. We then called genotypes and determined how often the genotype called from 
a given imbalanced dataset matched that called from the perfectly balanced dataset at 
heterozygote SNPs (copy number changes will not impact the calling of homozygous 
genotypes). We found that copy number gains of a chromosome, even extreme ones, have 
only very minor effects on genotyping accuracy on high-coverage data (fig. S2A), consistent 
with the variant calling algorithm being able to tolerate some fluctuation from the expected 
balanced proportions of allele observations. However, we found that copy number losses 
result in larger effects on genotype accuracy. We therefore considered copy number losses as 
particularly strong reasons for sample exclusion. 
 
DNA from these cell lines has previously been used to generate a large amount of data using 
a variety of technologies, and such data might potentially have been affected by the 
chromosomal alterations we identify here. To test to which extent a previously published and 
widely used array genotype dataset from the panel (8) was affected, we asked if the total 
sequencing coverage of a chromosome in our whole-genome sequencing data correlated with 
heterozygosity of the array genotypes. We found that increased coverage of a chromosome is 
associated with reduced heterozygosity in the array genotypes (fig. S2C), consistent with 
imbalanced allele counts leading to undercalling of heterozygotes. However, the effect is not 
very dramatic and thus is unlikely to have had much impact on population genetic analyses. 
 
 
Genotype calling and filtering 
We identified and genotyped SNPs and small indels using GATK HaplotypeCaller (44) 
version 3.5.0, applying genotype priors without bias towards the reference allele through the 
“--input_prior 0.001 --input_prior 0.4995” arguments (3), the “--pcr_indel_model NONE” 
argument for the PCR-free libraries and the “--includeNonVariantSites” argument to include 
monomorphic sites in the output VCF files. 
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We wished to apply filters that are equally stringent for variant sites as for non-variant sites. 
Any filter that applies to variant sites but not to non-variant sites, e.g. GATK’s Variant 
Quality Score Recalibration, comes with a risk of introducing a bias against variants and 
thereby introduce skews into various population genetic analyses that rely on the balance 
between these two classes of sites. We applied filters to the genotype calls using the GQ 
(“Genotype Quality”) and RGQ (“Reference Genotype Quality”) annotations that are 
produced by GATK for variant sites and non-variant sites, respectively. The GATK software 
outputs these as separate annotations and does not guarantee that they are comparable, but we 
performed a computational experiment to test how these annotations behave in practice. We 
performed single-sample calling for a given sample, and from these calls extracted the 
genotype annotations at the ~60 million sites which during the joint calling of the whole 
panel had been called as polymorphic SNPs but with a homozygous reference (“0/0”) 
genotype for the given sample (meaning some other sample in the panel carried an alternative 
allele at this site). This thus gives us a set of sites where the genotypes for the given sample 
has been evaluated by GATK once as non-variant sites and assigned RGQ values, and once 
as variant sites and assigned GQ values. For the sample HGDP01377, out of the 61,028,821 
surveyed sites, GQ != RGQ at 6,650,620 sites (10.9%), but |RGQ – GQ| > 1 only at 23,372 
sites (0.038%), suggesting most differences are just due to numerically rounding off the 
values into different consecutive integer bins. These comparisons are slightly complicated by 
multi-allelic sites in the joint calls – restricting to bi-allelic SNPs, |RGQ – GQ| > 1 at 0 sites. 
We performed the same experiment for two additional samples (HGDP00995 and 
HGDP01377) and obtained similar results. Thus, at least on this dataset called with non-
reference biased priors, GQ and RGQ behave extremely similarly in practice and we thus 
take the same threshold applied to these annotations as providing equally stringent filtering 
for variant and non-variant sites. 
 
We proceeded to filter the genotypes as follows. For each sample, we set any genotype to 
missing if it had a GQ or RGQ value equal to or lower than 20, or a coverage (“DP” 
annotation) equal to or greater than 1.65 times the genome-wide average coverage for the 
sample. 
 
We also computed two site level annotations: GATK’s Variant Quality Score Recalibration 
(VQSR) and excess heterozygosity. VQSR was run on the unfiltered genotypes, for SNPs 
with the hapmap_3.3.hg38.vcf.gz, 1000G_omni2.5.hg38.vcf.gz and 
1000G_phase1.snps.high_confidence.hg38.vcf.gz variant sets from the GATK GRCh38 
bundle for training and the former two for truth sets, and using the QD, MQRankSum, 
ReadPosRankSum, FS and MQ annotations as features. VQSR was run for indels with the 
Mills_and_1000G_gold_standard.indels.hg38.vcf.gz variant set for training and truth sets, 
and using the FS, ReadPosRankSum, InbreedingCoeff, MQRankSum and QD annotations as 
features. After annotating the VCF with the obtained VQSLOD values, another annotation 
“VQSRMODE” was added to each site to indicate whether it was evaluated in the SNP or 
indel mode, as at multi-allelic site this information might otherwise not always be retained 
when filtering out one of the alleles or subsetting to a sample set in which the evaluated allele 
is not present. The excess heterozygosity “ExcHet” annotation was calculated on a per-allele 
basis using the bcftools (51) fill-tags plugin. We then marked any site with a SNP VQSR 
score below -8.3929 or indel VQSR score below -1.0158 with the “LOW_VQSLOD” filter 
tag, and any site harbouring an allele with an ExcHet value equal to or larger than 60 
(corresponding to an excess heterozygosity p-value of 10-6) with the “ExcHet” filter tag. For 
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downstream analyses, we did not make use of the VQSR scores for filtering, unless noted, 
but we excluded sites tagged with excess heterozygosity from all analyses. 
 
We wished to restrict certain analyses to bi-allelic SNPs. Rather than excluding the entire site 
in case a third allele and/or an indel allele is present, which would mean that an e.g. an 
additional allele observed in a single individual would lead to the exclusion of a site 
harbouring two otherwise informative and perfectly usable common alleles, for most analyses 
we instead masked out alleles. If an allele is lower in frequency than two other alleles at the 
same site, or if the allele is an indel allele, we excluded the allele and set the genotype of any 
individual carrying a copy of the allele to missing, allowing us to retain the site and the two 
most common SNP alleles. 
 
We annotated SNP variants with two ancestral allele tags: one using the allele predicted by 
the Ensembl 8 primates EPO alignments (cc21_ensembl_compara_86), and one using the 
Chimpanzee allele in the GRCh38-PanTro4 alignment from the UCSC genome browser. 
 
We noticed that in population genetic analyses (e.g. principal component analyses) of the 
unfiltered genotype calls, there were noticeable batch effects between the libraries of 
different sources, primarily between Sanger and SGDP libraries but also to a smaller extent 
between PCR and PCR-free libraries. The genotype filtering described above reduces these 
effects, as does increasingly stringent VSQLOD thresholds, and when applying the 
accessibility mask described above the effects are not discernible. In the final genotypes used 
for analyses there is thus no batch effect visible (fig. S3). However, we still urge any users of 
the data to be aware of the possibility that some sensitive analyses could still be affected by 
these effects, particularly if not applying the accessibility mask. 
 
 
Overview of small variant callset 
Our filtered variant call set across 929 samples, excluding sites labelled with excess 
heterozygosity, contained 75,310,370 variant sites. This included 67,325,692 SNPs and 
8,797,538 indels. 3,085,457 of all variants were multi-allelic, and 855,977 of SNP sites 
(1.3%) were multi-allelic. The transition/transversion ratio was 1.88. 29,279,819 SNPs 
(43.5%) and 3,431,934 indels (39.0%) were singletons (the alternative allele observed only in 
one copy across the individuals). 
 
We compared the identified variants with those identified by the 1000 Genomes Project (2) 
(the 20170504 GRCh38 lift-over version). While both datasets contain millions of variant 
alleles that are not found in the other dataset, the vast majority of these are very low 
frequency, including many singletons, and a simple count of overlapping versus unique 
variants does not reveal to which extent either of the datasets contains variants that might be 
of higher frequency in particular populations. We therefore calculated, for each variant 
present in one dataset but not the other, its maximum allele frequency in any population. To 
avoid cases where a variant is actually present in the sequenced individuals in both datasets 
but absent from one of the VCFs because of technical issues in variant calling and/or lift-
over, we excluded 1000 Genomes variants that did not have the 
“GRCH37_38_REF_STRING_MATCH” tag (indicating that the reference allele string 
matches between GRCh37 and GRCh38), and we excluded from both datasets any variant 
that had a global allele frequency across the dataset of 30% or higher (the reasoning being 
that it would be very unlikely that such a globally common variant would not be sampled by 
both of these datasets). 
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The HGDP dataset contains a larger number of populations and these populations have 
smaller sample sizes than in the 1000 Genomes dataset, leading to higher variance in the per-
population allele frequency estimates and thus potentially resulting in an upwards bias when 
finding the maximum allele frequency across populations. To enable a fair comparison, we 
down sampled the 1000 Genomes dataset to resemble the HGDP dataset: for each of the 26 
1000 Genomes populations, two random subsets were constructed with sizes determined by 
sampling without replacement from the set of HGDP population sizes. The distribution of 
maximum allele frequencies across these size-matched 1000 Genomes populations for 
variants not present in HGDP shifted upwards, but variant numbers still remained much 
lower than the number of variants private to HGDP. We performed this down-sampling three 
times, and the results were very similar across the three replicates. 
 
 
gVCF construction 
Having genotype calls at monomorphic sites is very valuable, as they are needed in certain 
population genetic analyses and also as they make appropriate merging of different datasets 
possible. We produced VCFs containing every called site, but these files are very large and 
therefore challenging to distribute and store. We therefore constructed per-sample gVCFs 
(“genomic” VCFs) in which consecutive sites with homozygous reference genotypes and 
similar confidence level are grouped into single, block VCF records. We grouped such sites 
into four classes of blocks, in which the GQ and RGQ annotations are collapsed into a single 
GQ annotation: 
 
Block definition     GT field  FILTER tag 
DP ≥ mean(DP) × 1.65     set to missing  EXCESS_DP  
GQ>60 & DP < mean(DP) × 1.65   unchanged  . 
GQ>20 & GQ<=60 & DP < mean(DP) × 1.65  unchanged  . 
GQ<=20      set to missing  GQ20 
 
For each block record, only the DP and GQ genotype annotations are retained and used to 
represent the minimum value across all sites contained within the block. If a site with a non-
reference genotype fails any filter, we set the genotype to missing but still retain the 
alternative allele and all the genotype annotation fields, such that it’s always possible to 
restore the genotype called by GATK if desired. For sites with non-reference genotypes we 
also carried over a few site-level annotations from the joint variants VCF (ExcHet, 
VQSLOD, VQSRMODE). 
 
These gVCF files constitute compact representations of the genome sequences of single 
individuals, while retaining most of the information of relevance to assess the uncertainty of a 
given genotype call and allow for custom filtering. The mean size of these files across the 
929 samples is 1.32 GB (standard deviation = 0.48, min = 0.25, max = 3.25), with the 
variation largely explained by differences in sample coverage (rcoverage,file size = -0.79). 
 
 
Accessibility mask 
Rather than variant level filtering, for most analyses we instead relied on an accessibility 
mask. This mask was constructed on the basis of the 1000 Genomes Project’s strict mask for 
GRCh38 (20160622 version), which is based on coverage and mapping quality patterns in the 
1000 Genomes Project dataset. From this mask, we also subtracted any regions of the 
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primary GRCh38 assembly which have alternative loci or patch scaffolds, as defined by the 
NCBI assembly resource for the GCA_000001405.15_GRCh38 entry. As we performed 
variant calling on GRCh38 read alignments that had not been post-processed to adjust the 
mapping qualities in an alt-aware manner, genotypes in these regions are likely not reliable. 
We also subtracted all sites tagged with excess heterozygosity, considering them unsuitable 
for genotyping from Illumina reads. The resulting masks leaves approximately 73% of the 
primary assembly for analyses, and unless otherwise noted our analyses are restricted to this 
mask. While we find that restricting to this mask without further site-level filtering appears 
suitable for the population genetics analyses we perform here, other types of analyses using 
this dataset might benefit from alternative filtering strategies, e.g. using the VQSR scores or 
other annotations. In particular, analyses of variants of potential functional, medical or 
selection relevance might benefit from interrogating variants also in the approximately 27% 
of the genome that falls outside of this mask. 
 
 
10x Genomics sequencing and haplotype phasing 
We selected 26 samples from 13 populations to process with the 10x Genomics Chromium 
technology (14), producing linked reads with long-range physical information that enable 
haplotype phasing. We selected 13 of the 54 populations representing key ancestries. Within 
each of these populations, we tried to fulfill several criteria when selecting which two 
samples to process: an absence of any large-scale chromosomal copy number alterations; a 
typical ancestry profile with respect to their population as assessed through principal 
component and model-based clustering analyses; no evidence of high relatedness between the 
two individuals; and male individuals if possible, to obtain Y chromosome data. 
 
DNA quality and molecule length distributions were assessed using the Agilent TapeStation, 
and Chromium libraries were then constructed for the 26 selected samples and sequenced on 
single lanes of Illumina HiSeqX machines (2×151 bp reads, average coverage 30.2X) (table 
S2). Four of these libraries were described and used for population genetic analyses in a 
previous publication (52). The resulting barcoded reads were processed using the 10x 
Genomics Long Ranger software version 2.1.2 with genotype calling through GATK 
HaplotypeCaller 3.5.0, to obtain phased VCFs for each individual. In order to maintain only a 
single set of genotype calls for these 26 individuals for which we had calls both from the 
standard Illumina data and from the Chromium data, we lifted over the haplotype phase 
information at heterozygous sites from the latter to the former. Any genotype where the two 
calls disagreed were set to unphased, and variants within phase blocks that contained only 
one variant were also set to unphased. The resulting VCF files thus contained the unaltered 
genotypes that we called from the standard Illumina data, with only haplotype phase 
information obtained from the Chromium experiments. 
 
 
Structural variation calling 
We called copy number variants using GenomeSTRiP v2.00 (53) using default parameters. 
We initially ran the algorithm jointly on all 965 available libraries, including libraries not 
passing quality control for short variant calling, and including the Meyer libraries. However, 
we found the quality of resulting calls for the Meyer libraries to be low and re-ran the 
algorithm excluding them. 
 
As we have a number of duplicate samples prepared using PCR and PCR-free libraries for 
quality control purposes, we ran the algorithm twice for these, separately for each library 
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preparation set, in each case together with the rest of the dataset. We found that more variants 
were called for PCR-based libraries compared to PCR-free libraries. We also found that 
samples prepared with PCR libraries had a larger number of shared heterozygous calls that 
are missing from the PCR-free libraries, suggesting these are artefactual calls. We 
subsequently excluded variants with excessive heterozygosity as computed by bcftools v1.9 
(ExcHet < 0.0001) separately for each library preparation and sequencing location set (i.e. 
SGDP PCR, SGDP PCR-free, Sanger PCR and Sanger PCR-free). For the SGDP PCR 
samples we used ExcHet < 0.05 as this set had only 9 samples. 
 
We investigated potential cell-line artefacts in further details by analysing coverage across 
the genome for each sample, as CNV calling might be more sensitive to such artefacts than 
short variant calling. From the 929 samples included in the SNP analysis, we excluded the 
Meyer samples as well as 10 samples that displayed evidence of alterations across multiple 
chromosomes. We also masked regions in 74 samples that showed more limited putative 
alterations, meaning we retain the samples but we did not consider variants called for them 
within these masked regions. This resulted in a VCF file with 911 samples in which 
GenomeSTRiP called 50,474 CNVs. 
 
We examined the calls and found cases where the algorithm splits variants into multiple 
shorter entries which are not always overlapping. This a known behaviour of the 
GenomeSTRiP CNV pipeline, and it seems to occur when there are variants with different 
copy numbers across different individuals within a sub-segment of a larger variant. This issue 
can also occur if a low-quality variant is found within a larger CNV. To address these issues 
and be able to more accurately estimate the total number of identified CNVs in our dataset, 
we merged high quality (CNQ > 12) calls that have same diploid copy number and are within 
50 kb of each other, for each sample individually. For the X-chromosome we performed this 
separately for male and female samples. At this point, we observed that one sample 
(HGDP01254) had an elevated number of variants compared to the rest of the samples. 
Closer inspection showed that these calls had relatively low genotype quality. To be 
conservative, we excluded this sample from downstream analysis, leaving 910 individuals. 
All variants were then merged using bedmap v2.4.35 (54) based on 100% overlap. This 
resulted in 39,634 autosomal variants and 1,102 variants on the X-chromosome. 
 
 
Statistical haplotype phasing 
As we only had 10x Genomics experimental phasing data for a subset of samples, we also 
performed statistical phasing of the whole panel. We restricted statistical phasing to biallelic 
SNPs (by masking out third or higher alleles and indel alleles, rather than excluding entire 
sites) lacking filter tags. To take advantage of a large external reference panel without having 
to exclude variants not present in the reference panel, we applied a scaffold-based method 
implemented as a genotype calling mode in SHAPEIT2 (55). We first obtained the scaffold 
by phasing the genomes using Eagle (v2.3.2) (56) after three PBWT iterations with 4,956 
genomes from the African Genome Resources (https://www.apcdr.org/) in the reference 
panel (this includes the full 1000 Genomes Project panel). Subsequently we divided the 
unphased chromosomes into windows each spanning 2,400 SNPs with 200 overlapping ones 
between adjacent windows. Beagle 4.1 (57) was run with the -gtgl option to produce 
genotype probabilities in each window. Based on the genotype probabilities, the variants 
were then mapped onto the phased scaffold with the --call and --input-scaffold options in 
SHAPEIT2. To avoid under- and overflow errors (as described in (3)), we ran SHAPEIT2 in 
the same windows as in the previous step instead of assigning windows by physical lengths, 
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and further enlarged the windows when such errors still occurred on rare occasions. Missing 
genotypes in the unphased input dataset were reset to missing in the phased dataset for 
consistency. 
 
We evaluated the accuracy of the statistical phasing by comparing the inferred haplotypes to 
those obtained for the samples sequenced with 10x Genomics linked reads. If adjacent phase-
resolved heterozygous sites in the same phasing block in the 10x genome formed a different 
haplotype structure than that in the statistically phased genome, we considered it a switch 
error. Table S3 lists the switch error rates on chromosome 1, measured as the total number of 
switch errors divided by the total number of possible switches (namely the number of 
heterozygous sites minus one). When singleton alleles are excluded, the highest switch error 
rates of around 1.2% are found in the San and Papuan populations, which roughly 
corresponds to on average one switch error per 160 kB. We therefore do not expect phasing 
errors to have a detectable impact on downstream analysis targeting haplotypes substantially 
shorter than this. 
 
 
Metadata curation 
There is some inconsistency in the population labels used in the prior literature on the HGDP-
CEPH samples. We reviewed the population labels, aiming to adhere as much as possible to 
the labels provided in the official CEPH sample documentation but also to define the most 
scientifically useful groupings with labels that are ethnically, linguistically and 
geographically appropriate. After this review, we arrived at 54 population labels. While most 
differences to previously used labels involve only minor spelling variations, a few cases 
involve more notable changes. We comment on some of the population labels and the 
motivation behind our choices, as well as any notes on the coordinates used to indicate 
geographical origins, here:  
 

- BantuSouthAfrica and BantuKenya: These have sometimes been collapsed into a 
single “Bantu” label, however we use two labels as they are substantially separated 
both geographically and genetically (FST ≈ 0.008). The South African samples have 
sometimes been further subdivided into “South-Western” and “South-Eastern” sets or 
into individual language groups, however to retain a decent sample size for the 
population we do not make use of these further subdivisions. 
 

- Colombian: These have sometimes been subdivided into two individual language 
groups (Piapoco and Curripaco), however to retain a decent sample size we do not 
subdivide these samples (the CEPH documentation also does not describe which of 
the samples are from which of the two language groups). 

 
- Han and NorthernHan: While representing individuals from the same ethno-

linguistic group, given the large number of Han individuals in the panel we made use 
of the sometimes utilized second label for the set sampled in northern China, for 
which we assign new geographical coordinates based on documentation from the 
original sample collection. 

 
- Mongolian: “Mongola” has been used, however we believe this reflects a spelling 

error. The geographical coordinates reported for this population in (58) differs slightly 
from those in the CEPH documentation – we believe the latter are the correct 
coordinates. 
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- Bougainville: “Melanesian” or “NAN Melanesian” (NAN=Non-Austronesian 

language) has been used for this group from Bougainville Island, but is overly 
generic. The name of a specific language group has sometimes been used, but we do 
not make use of this as it is not part of the CEPH documentation. 

 
- PapuanSepik and PapuanHighlands: The prior literature has used the single label 

“Papuan” for these samples from Papua New Guinea, however it has been shown that 
they consist of two genetically highly distinct (FST ≈ 0.03) subsets, one with affinities 
to populations in the eastern highlands and one with affinities to populations in the 
Sepik river region of the northern lowlands of New Guinea (52), and we thus separate 
them into two separate labels. For the PapuanSepik population, we use the 
geographical coordinates provided in the CEPH documentation, which are consistent 
with a Sepik region location. For the PapuanHighlands population, we assign new 
coordinates on the basis of the results reported in (52). 

 
- San: “Juǀʼhoan North” has been used, but this label is not used in the CEPH 

documentation and so we use the “San” label, even if it is more generic. 
 

- BergamoItalian: “North Italian” has been used, but we include the Bergamo origin of 
these samples in the label to clarify its distinction from the Tuscan population that is 
also part of the panel. 

 
 
f-statistics analyses 
We calculated f4 and D-statistics using the ADMIXTOOLS package version 5.0 (10). As the 
ADMIXTOOLS programs used excessive memory when attempting to use all variants to 
calculate large numbers of statistics, e.g. the 948,753 f4-statistics corresponding to all 
possible relationships among the 54 populations, we ran ADMIXTOOLS separately on 5 Mb 
blocks across the genome and then performed our own block jackknifing across the per-block 
estimates. We verified on a small subset of statistics that the obtained f4 values and Z-scores 
were highly correlated to those calculated one by one directly by ADMIXTOOLS. FST was 
calculated using EIGENSOFT version 6.0.1 (45). 
 
 
Effects of variant ascertainment on population genetic analyses 
The ideal class of variants for analyses that rely on genetic drift are those that were 
polymorphic in the shared ancestral population of the given populations under study. One 
approach to approximate this ancestral polymorphism is to ascertain variants in an outgroup. 
We ascertained SNPs that are polymorphic among three high-coverage archaic human 
genomes: the Altai Neanderthal, the Vindija Neanderthal and the Denisovan genome. Within 
the accessibility mask, this resulted in 2,809,464 variants. Out of these, 1,350,097 were also 
polymorphic within the set of 929 modern humans. Out of these, 931,790 (69.0%) were 
polymorphic also among Africans only (101 individuals, excluding three BantuKenya 
individuals displaying some non-African ancestry components in ADMIXTURE runs), 
demonstrating that the presence of these variants in present-day modern human populations is 
to a large extent explained by them being present in the shared ancestral population of 
modern and archaic humans, and only to a smaller extent a consequence of archaic admixture 
into non-Africans. 
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We compared results of various population genetic analyses obtained on all the discovered 
variants and the above outgroup ascertained set to sets of variants present on commonly used 
genotyping arrays: the Illumina 650K (or “Li 2008”) array (8), the Humans Origins array (10) 
and the Illumina Multi-Ethnic Global Array (“MEGA”). We lifted over the site lists of these 
arrays to GRCh38 using the NCBI Remap tool. While most of the samples in the HGDP-
CEPH panel have been typed on the former two arrays, rather than using those datasets 
directly we extracted the genotype calls made from our whole-genome sequencing data on 
the sites present on the arrays, such that genotypes at any given site are held constant and 
only the sites used differ. We found: 
 

- f4-statistics calculated using array sites are highly correlated to those calculated using 
all variants or outgroup ascertained variants, overall. However, some statistics, 
especially those involving African populations, deviate in the array sites as a result of 
ascertainment bias (Fig. 1C, fig. S4A). The overall magnitude of the f4-statistics 
differs systematically between array sites and all sites, but this just reflects the overall 
larger number of variants included in the latter, many of which will not be 
polymorphic among the set of four populations used in a given statistic and therefore 
just contributes to smaller allele frequency differences on average. 
 

- Estimates of individual ancestry components using ADMIXTURE (46) are cleaner 
when using outgroup ascertained sites, with less “leaking” of a given regional 
ancestry component into individuals outside that region (fig. S4B). For example, 
running ADMIXTURE on k=5 using the Li 2008 sites, individuals from Central and 
South Asian populations are assigned 5-10% of the Oceanian component, but this is 
substantially reduced with outgroup ascertained sites. Similarly, it reduces the fraction 
of Native American component in Europeans. 

 
- FST is generally slightly overestimated when using array sites, especially so when 

comparing African to non-African populations (fig. S4C). The Pearson correlations 
between the FST values estimated using whole-genome sequencing data (excluding 
singletons) and those estimated using different sets of ascertained sites were, for the 
full set of FST values: rarchaic-ascertained = 0.99976, rLi 2008 = 0.99726, rHuman Origins = 
0.99726, rMEGA = 0.99923. When restricting to FST values between one African and 
one non-African populations, the correlations were: rarchaic-ascertained = 0.99883, rLi 2008 = 
0.99492, rHuman Origins = 0.99730, rMEGA = 0.99692. 

 
 
Region specific variants 
We studied the number and frequency distributions of variant alleles that are private to a 
particular region of the world, meaning alleles that have counts of zero across all individuals 
outside the given region. For these analyses, we did not restrict only to variants falling within 
the accessibility mask, with the rationale that technical errors are unlikely to result in 
genotype distributions that correlate perfectly with geographical labels. To reduce the effects 
of recent admixture between regions, we excluded individuals displaying evidence of such 
admixture in model-based clustering analyses. We ran ADMIXTURE (46), on 1,350,097 bi-
allelic SNPs ascertained as polymorphic among three high-coverage archaic human genomes, 
with five ancestry components. The components obtained corresponded well to five 
continental-level ancestries: sub-Saharan African, West Eurasian, East Eurasian, Native 
American and Oceanian. We used the estimated per-individual ancestry proportions together 
with the population and region level metadata to define which individuals should be included 
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when counting variants private to a given region (the “ingroup”) and which individuals 
should be used to ascertain the allele count of zero (the “outgroup”) (table S4). Our rationale 
when defining these criteria was that, if we are looking for variants that are found in region A 
but not region B, it is more important to exclude individuals from B with recent admixture 
from A than vice versa – the inclusion of the former might cause otherwise private A variants 
to be observed in B individuals and therefore not be identified as private, while the inclusion 
of the latter will only lead to underestimation of the allele frequencies of private variants in 
A. We calculated 95% Poisson confidence intervals around the private variant counts using 
the R function poisson.test. In addition to the cumulative displays, fig. S5A displays the 
counts of region-specific SNPS in a non-cumulative fashion. 
 
When analysing CNVs, we set any individual CNV genotypes with GQ < 20 to missing and 
excluded variants with >15% missingness across individuals (calculated in the VCF after 
filtering but before merging of adjacent variants). To further conservatively avoid 
overcounting single CNVs that have been called as multiple adjacent entries, we 
subsequently merged variants with similar allele frequencies and the same copy number lying 
within 25 kb of each other and only report the variant with the lowest genotype missingness. 
If merged variants have the same missingness but slightly different allele frequencies, we 
calculated and report the average frequency. 
 
To assess whether the high number of high-frequency private Oceanian CNVs could be 
expected by sampling noise alone or representing an enrichment indicative of positive 
selection, we randomly sampled 123 private Oceanian SNPs (matching the number of private 
Oceanian CNVs, with minimum allele count > 2) 1000 times and compared the frequency 
distributions in these random samples to the observed CNV distribution. We observed 12 
sample sets with a variant having an equal or higher frequency than the single most frequent 
CNV (at a frequency of 82.14%). However, among these 12 sets, 10 sets had only one variant 
at >50% frequency and two sets had two variants at >50%, whereas in the observed CNV 
distribution we find four variants at >50% frequency. The observed CNV distribution is thus 
highly unlikely to be the result of sampling noise (fig. S5B). 
 
 
MSMC2 split time analyses 
Pairwise population separation histories were studied using the MSMC2 software (22, 29). 
Input files were prepared from genotypes on all called sites, including non-variant sites, and 
with haplotype phase obtained from the 10x Genomics Chromium experiments we had 
performed on two individuals each from 13 populations. MSMC2 v2.0.2 was run on eight 
haplotypes (four from each of the two populations) with the “--skipAmbiguous” argument to 
skip unphased segments of the genome. Results were scaled to real time by applying a 
mutation rate of 1.25×10-8 per site per generation and a generation time of 29 years. 
 
Clean split scenarios were simulated using scrm (59) version 1.7.2, using a mutation rate of 
1.25×10-8 per site per generation, a generation time of 29 years, a recombination rate of 
1.12×10-8 per site per generation, an initial Ne of 20,000, a doubling of Ne between 300 and 
1000 kya and simulating 14 chromosomes each of size 150 Mbp (for a total genome size of 
2.1 Gbp, similar to the size of the empirical genomes restricted to the accessibility mask). The 
average heterozygosity of the resulting sequences was 0.986 per kbp, similar to human 
genomes of African ancestry. The sequences were analysed with MSMC2 as above, except 
the --fixedRecombination parameter was applied (running without this resulted in non-
monotonic curves for many simulated histories). 
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We performed additional MSMC2 runs to test if the deep structure observed in our empirical 
results, i.e. that the cross-coalescence curves remain below 1 even several hundreds of 
thousands of years ago, could be caused by batch effects associated with sequencing and 
processing the two haploid genomes from a diploid human sample together. Any process that 
could cause the genotypes of these two genomes to appear artificially similar, from somatic 
or cell-line loss of heterozygosity events to under-calling of heterozygous genotypes during 
data processing, could cause the time to coalescence between these two genomes to appear 
lower than that to genomes from another individual. We ran MSMC2 on four haplotypes, but 
in each of the two populations selecting one haplotype from two different individuals, using 
the “-I” command line syntax of MSMC2 v2.1.1 on input files prepared with eight 
haplotypes, e.g. “-I 0,2”, “-I 4,6” and “0-4,0-6,2-4,2-6” for the within first population, within 
second population and between population runs, respectively. We thus use four haplotypes 
sequenced in four different individuals, and should avoid any batch effects of the type 
described above. The curves obtained from these runs in many cases tend towards slightly 
higher relative cross-coalescence values in deep time periods then when using haplotypes 
sequenced in the same individual, and more so when involving two non-African populations, 
but they still display largely the same behaviour (fig. S7). While it’s possible that the 
magnitude of the deep structure exhibited in our results could thus be slightly exaggerated by 
technical artefacts of this nature, they are unlikely to be responsible for the whole effect. 
 
 
Application of MSMC2 to archaic genomes 
We also ran MSMC2 on pairs of modern human and archaic populations. We used the high-
coverage Altai Neanderthal, Vindija Neanderthal and Denisovan genomes, left all 
heterozygous genotypes in these as unphased, and ran MSMC2 as above except using only 
two haplotypes per population (we also performed runs without the “–skipAmbiguous” 
argument but found this made little difference to the results). While the method relies on 
phased genotypes for the between population coalescence rate estimation, the low 
heterozygosity of the archaic genomes means that many segments of these genomes will be 
homozygous and thus by necessity phased, which might be the reason we obtain seemingly 
sensible results. 
 
We also performed simulation experiments to validate the robustness of running MSMC2 
with one archaic genome lacking haplotype phase information. We used the basic parameters 
described above for the clean split simulations, and used scrm to simulate a history 
approximately mirroring the divergence and admixture between modern humans and 
Neanderthals: a divergence between two populations at 500 kya, followed (forward in time) 
by a ten-fold reduction in effective size of the second population at 400 kya, then followed by 
2% gene flow from the second, low-diversity population into the first population at 50 kya. 
We then stripped the haplotype phase from the genome sampled from the second population 
and ran MSMC2. The results accurately recapitulate the simulated history, both the initial 
divergence and the later gene flow peak, and the stripping of the haplotype phase from the 
genome sampled from the low-diversity population does not substantially affect the results 
(fig. S9A). 
 
We plotted the results naively as above, but also made plots where we attempted to correct 
for the fact that the archaic genomes are from ancient remains that stopped accumulating 
mutations at their time of death several tens of thousands of years ago. MSMC2 reports the 
within and the between population coalescence rates separately, and we could thus adjust 
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these as a function of the sample age before calculating the relative cross-coalescence rates. 
We shifted back the within population coalescence rates by adding a new time segment 
between 0 and the sample age with a rate of 0 and then adding the sample age to all existing 
time segments. We similarly shifted back the between populations coalescence rates by half 
the age of the sample age. We used sample ages of 122,000 years for the Altai Neanderthal, 
52,000 years for the Vindija Neanderthal and 72,000 years for the Denisovan genome (20). 
Overall, we found that these sample age adjustments did not have substantial effects on the 
results, especially not the timing of the separation between modern and archaic humans on 
the order of 500 kya. They did however shift backwards in time the archaic admixture signal 
in non-African genomes such that it peaks around 80-120 kya, rather than 40-80 kya, when 
using the Vindija Neanderthal genome – this might actually more accurately reflect the 
timing of the event, as the introgressing Neanderthal population has some level of divergence 
from the Vindija individual (20) such that the coalescence events with the introgressed 
haplotypes will be older. The curves obtained when using the Altai Neanderthal are shifted 
backwards in time relative to when using the Vindija Neanderthal, reflecting how the former 
is further diverged from the introgressing source. 
 
We observe the MSMC2 Neanderthal gene flow signal in all non-African genomes and to a 
much-reduced degree in Yoruba. The most likely explanation for these results is non-African 
gene flow carrying Neanderthal ancestry into West Africa (41). The other African 
populations do not display the same behaviour, with the tiny deviations from zero relative 
cross-coalescence rate in recent time periods, especially so when shifting back rates by 
sample age (including when using the Denisovan genome), likely not being distinguishable 
from technical noise. We do not observe any clear recent gene flow signal when running the 
Denisovan genome against African, Eurasian or Native American genomes (a tiny increase in 
the Yakut is difficult to distinguish from technical noise). However, when running Denisovan 
against Oceanian genomes (PapuanHighlands and PapuanSepik) a subtle upwards shift in the 
curve is visible roughly in the time span between 140 and 400 kya (moving back by ~40 kya 
when shifting rates by the Denisovan sample age). This very likely reflects the Denisovan 
gene flow in these populations, with the large backwards shift in time of the signal reflecting 
how the sequenced Denisovan from the Altai mountains is highly diverged from the 
population that contributed to Oceanians (16), such that the coalescence events with the 
introgressed haplotypes in Oceanians are quite old. 
 
The Neanderthal gene flow signal is observed in both of the analysed Yoruba individuals, 
which provides some reassurance that it is a genuine signal. To further evaluate the 
robustness of the signal, we generated 50 separate block bootstrap replicate datasets for the 
Yoruba versus Vindija Neanderthal case by sampling 5 Mb chunks from across the genome, 
and ran MSMC2 on each of these. The Neanderthal gene flow signal is consistently observed 
across the bootstrap replicates, demonstrating that is it for example very unlikely to be driven 
by some technical artefact in a small subset of the genome (fig. S9B). 
 
The application of MSMC2 to archaic genomes thus provides an additional line of evidence 
for the known archaic admixture in non-Africans, as well as for small amounts of 
Neanderthal ancestry in West Africans. We note that a conceptually similar approach, 
identifying haplotypes in non-Africans with low absolute divergence to archaic genomes, was 
used previously (16). Importantly, while methods relying on allele frequency correlations, 
e.g. D or f4-statistics, produce results that are always relative between pairs of modern human 
populations, these MSMC2 results involve just one modern human genome at the time 
without the need for any baseline assumptions. These results thus allow us to say not only 
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that most sub-Saharan African groups have less Neanderthal ancestry than non-Africans, but 
also that they most likely in an absolute sense have very little Neanderthal ancestry, e.g. in 
the case of Mbuti a level that, within the limits of resolution of the method, likely is 
compatible with no Neanderthal ancestry at all. 
 
 
Site frequency spectrum models with momi2 
We used the momi2 software (33), which fits models to the site-frequency spectrum, to 
estimate pairwise split times between all 1431 combinations of the 54 populations, assuming 
a simple clean split without subsequent gene flow and a mutation rate of 1.25×10-8 per site 
per generation, using ancestral allele information from the Ensembl EPO alignments, and 
with confidence intervals obtained through bootstrapping across 500 genomic blocks. While 
the clean split assumption will be unrealistic in many cases, as evidenced by our MSMC2 
results, the overall correlation between these momi2 split time estimates and the MSMC2 
midpoint estimates is quite high (r = 0.93), suggesting the former will provide a decent 
approximation of the latter without requiring phased haplotypes. However, we also observed 
that the momi2 estimates are affected by the sample size of a population, and that they clearly 
greatly underestimated split times involving Native American populations (for example, 
some Native American against East Asian split estimates at just a few thousand years), 
perhaps as an artefact of the low recent effective size of these populations. We therefore do 
not place much emphasis on any particular single estimates. More elaborate models 
incorporating multiple populations, post-split gene flow and archaic admixture in the history 
of non-African populations have been shown to provide more accurate split time estimates 
(33). 
 
 
Effective population size histories 
We used smc++ v1.12.1 (24) to estimate effective population size histories for each of the 54 
populations separately. Input files were prepared from genotypes on all called sites, masking 
out indel alleles and any third or further minor alleles at multi-allelic sites by setting the 
genotype of any individual carrying such alleles to missing. In addition to sites falling outside 
the accessibility mask, sites not present in the input VCFs were masked out from the 
analyses. smc++ requires one individual in the run to be specified as the “distinguished” 
individual, forming the basis of the coalescence time element of the inference, with the 
remaining individuals only contributing allele frequency information. For each population, 
we established a ranking for which individuals to use the distinguished individual, firstly 
prioritizing individuals not listed as ancestry outliers relative to their population by (10), 
secondly prioritizing Sanger PCR-free, then Sanger PCR, then SGDP PCR-free and then 
SGDP PCR-free libraries, and thirdly prioritizing higher sequencing coverage. 
 
We ran smc++ assuming a mutation rate of 1.25×10-8 per site per generation, inferring 
effective population size up until 34 generations (approximately 1000 years assuming a 
generation time of 29 years) ago and otherwise default settings. For each run we prepared six 
alternative input files with different individuals as the distinguished individual and then gave 
all of these as input, resulting in composite likelihood results. To evaluate the variability of 
the inferred effective population size curves, we also generated 50 separate block bootstrap 
replicate datasets for each population, in each case by sampling 5 Mb chunks from across the 
genome, and ran the inference on each of these (fig. S10A). 
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Some populations display substantial decreases in inferred effective population size in the 
last ~5000 years, but we suspect that in many cases this reflects very recent endogamy or 
bottlenecks, the effects of which are being spread out over a larger time interval by the 
inference. We also noticed that under some parameter settings, in particular when decreasing 
the strength of the regularization (allowing more flexible curves to be fit, but also with a 
greater risk of overfitting) or when stopping the inference at 172 instead of 34 generations, 
Native American groups are inferred to have experienced dramatic growth approximately in 
the period between 20 and 10 kya. This is not observed when running on the parameter 
settings above, but we speculate that this could be a real signal which is counteracted in the 
inference by the strong bottlenecks experienced in the very recent time by the analysed 
Native American groups. Rapid population growth in this time period, coinciding with the 
initial peopling of the American continents, would be consistent with observations from the 
mitochondrial and Y-chromosomal phylogenies, which both display dramatic star-like 
behaviour starting around 15 kya indicative of rapid population expansion at this time. While 
the large degree of variability in the inferred curves between SMC++ parameter settings 
means we cannot be highly confident that the inferred growth reflects real growth rather than 
an artefact, we do not observe the same behaviour in other populations under the same 
settings (fig. S10B,C), suggesting that at least the phenomenon is a function of Native 
American genomes specifically rather than simply inherent to the parameter settings 
themselves. 
 
For the 13 populations for which we had physically phased genomes, we also inferred 
effective population sizes histories using MSMC2. We ran MSMC2 on the two diploid 
genomes (four haplotypes) from each of these populations with the “--skipAmbiguous” 
argument to skip unphased segments of the genome. The MSMC2 results obtained on these 
physically phased genomes were largely concordant with the SMC++ results (fig. S11), 
confirming broad observations including recent declines in the African hunter-gatherer 
groups Mbuti, Biaka and San. 
 
 
Y chromosome analyses 
The haploid genotype calls for 603 males (here excluding the Meyer libraries which were of 
lower quality) across 10.3 Mb of accessible regions on the Y chromosome (60), lifted over to 
GRCh38 using the UCSC liftOver tool, were extracted using bedtools v2.22.0 (61). Within 
these regions, sites were filtered out if they contained indels, had missing genotype calls in 
more than 5% of the samples, had genotype qualities below 30 in more than 5% of the 
samples or had coverage above twice or below a third of the sample mean for more than 5% 
of the samples. This left a final set of 52,032 variant and 10,016,322 invariant sites.  
 
The haplogroup of each sample was predicted using the yHaplo software 
(https://github.com/23andMe/yhaplo) after substituting the marker coordinates in the relevant 
input files to correspond to the GRCh38 assembly. An initial maximum likelihood 
phylogenetic tree was constructed using RAxML (v8.2.10) (62) with the GTRCAT 
substitution model with the set of 52,032 variant sites and then used as a starting tree for 
dating with BEAST v1.7.2 (63, 64). Markov chain Monte Carlo samples were based on 
11,000,000 generations, logging every 1,000 generations. The first 10% of generations were 
discarded as burn-in. Eight independent runs were combined using LogCombiner. A 
constant-sized coalescent tree prior, the HKY substitution model, accounting for site 
heterogeneity (gamma) and a strict clock with a substitution rate of 0.76×10-9 (95% 
confidence interval: 0.67×10-9 to 0.86×10-9) single nucleotide mutations per bp per year (65) 
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was used. A prior with a normal distribution based on the 95% confidence interval of the 
substitution rate was applied. Only the variant sites were used, but the number of invariant 
sites was defined in the BEAST xml file. A summary tree was produced using TreeAnnotator 
v1.8.1. The final tree (fig. S12, fig. S13) was visualised using the FigTree software 
(http://tree.bio.ed.ac.uk/software/figtree/). 
 
 
Global estimates of archaic ancestry proportions 
Genotypes for the high-coverage Vindija Neanderthal (20), Altai Neanderthal (16) and 
Denisovan (11) individuals on the GRCh37 reference assembly, along with corresponding 
filter files, were obtained from ftp.eva.mpg.de/neandertal/. The genomic coordinates were 
lifted over to GRCh38 using CrossMap v0.2.5 (66). 
 
To estimate global proportions of archaic ancestry, we constructed a VCF which contained 
genotypes for the high-coverage Vindija Neanderthal, Altai Neanderthal and Denisovan 
genomes not just at sites that are polymorphic among modern human genomes, but also 
including sites that are monomorphic among modern humans but polymorphic among the 
entire set of modern and these three archaic genomes. We used these files, restricted to the 
accessibility mask, to estimate: 
 

- The proportion of Neanderthal ancestry in Eurasians: We used an f4-ratio, assuming a 
baseline of no Neanderthal ancestry in Mbuti, calculated using popstats (67), with the 
“--informative” option to include only variants polymorphic on both sides of the f4-
statistic: 

𝑓: 𝐶ℎ𝑖𝑚𝑝𝑎𝑛𝑧𝑒𝑒, 𝐴𝑙𝑡𝑎𝑖	𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙; 𝑋,𝑀𝑏𝑢𝑡𝑖
𝑓: 𝐶ℎ𝑖𝑚𝑝𝑎𝑛𝑧𝑒𝑒, 𝐴𝑙𝑡𝑎𝑖	𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙; 𝑉𝑖𝑛𝑑𝑖𝑗𝑎	𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙,𝑀𝑏𝑢𝑡𝑖

 

 
The statistic gives mean estimates of 1.18% for Middle Eastern, 2.09% for Central & 
South Asian, 2.14% for European, 2.26% for American and 2.24% for East Asian 
populations. This statistic will not provide accurate estimates for Oceanian 
populations because of their high Denisovan ancestry. The highest population 
estimate is for the Chinese Xibo population at 2.41% (95% CI: 2.12 – 2.70%). Within 
Africa, the estimates are 0.048% (95% CI: -0.061 – 0.16%) for Biaka, 0.13% (95% 
CI: -0.025 – 0.28%) for San, 0.16% (95% CI: 0.031 – 0.29%) for Mandenka, 0.16% 
(95% CI: 0.035 – 0.29%) for BantuKenya, 0.16% (95% CI: 0.035 – 0.29%) for 
BantuSouthAfrica and 0.18% (95% CI: 0.05 - 0.30%) for Yoruba. 
 

- The proportion of Denisovan ancestry in Oceanians, in two different ways: 
1) Using an f4-ratio, assuming a similar level of Neanderthal ancestry in 

PapuanHighlands as in Han (36), calculated using popstats with the “--
informative” option to include only variants polymorphic on both sides of the 
statistic: 
 

𝑓: 𝑀𝑏𝑢𝑡𝑖, 𝑉𝑖𝑛𝑑𝑖𝑗𝑎	𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙; 𝐻𝑎𝑛, 𝑃𝑎𝑝𝑢𝑎𝑛𝐻𝑖𝑔ℎ𝑙𝑎𝑛𝑑𝑠
𝑓: 𝑀𝑏𝑢𝑡𝑖, 𝑉𝑖𝑛𝑑𝑖𝑗𝑎	𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙; 𝐻𝑎𝑛, 𝐷𝑒𝑛𝑖𝑠𝑜𝑣𝑎𝑛

 

 
This gave an estimate of 2.86% (95% CI: 2.08 - 3.64%). 
 

2) Using the qpAdm method (68) in ADMIXTOOLS version 5.0 (10). A model with 
PapuanHighlands as target, Karitiana and Denisovan as sources, and Yoruba, 
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Altai Neanderthal, Chimpanzee, Vindija Neanderthal, Mbuti and Biaka as 
outgroups gives an estimate of 2.70% (95% CI: 2.11% - 3.29%), with a model fit 
p-value of 0.1892. The rationale behind this approach is to simply model 
PapuanHighlands as a two-way mixture between Denisovan and non-African 
ancestry, and we here use Karitiana as a representative of the latter. It’s likely that 
Karitiana has a small but non-zero amount of Denisovan ancestry, which would 
bias the estimate downwards, but given the very low amount of this ancestry the 
bias should be very small. Using a West Eurasian population with likely zero 
levels of Denisovan ancestry in place of Karitiana in the model would not be ideal 
as the lower levels of Neanderthal ancestry in such populations compared to 
Oceanians would lead to bias. 
 
If we take the midpoint of these two estimates and conservatively take the largest 
confidence intervals, we obtain an ancestry fraction of 2.78% (CI: 2.08 - 3.64) 
 
In summary, these estimates of the proportion of Denisovan ancestry in Oceanians 
are largely consistent with previous f-statistics based estimates, but lower than 
some of the highest estimates: 4.8% (35), 3.0% (11), 3.5% (69), 3.4% (36), 3.2% 
(37). The first of these estimates was made using a low-coverage Denisovan 
genome sequence and with lower quality modern data, and is thus likely not very 
reliable. A proportion of around or, as suggested by our new estimates here, even 
slightly below 3.0%, thus seems probable. 

 
- The proportion of Neanderthal ancestry in Oceanians: Due to the high levels of both 

Neanderthal and Denisovan ancestry in Oceanians, and the partially shared drift 
between these two archaic groups, it is difficult to obtain an unbiased estimate of 
Neanderthal ancestry in Oceanians using a simple f4-ratio. To get around this, we tried 
to estimate both Denisovan and Neanderthal ancestry jointly using qpAdm. We tried a 
model with PapuanHighlands as target, Denisovan, Vindija Neanderthal and Yoruba 
as sources and Chimp, Altai Neanderthal, Mbuti and San as outgroups, but this did 
not fit the data (p = 4×10-36), likely due to the model not accurately representing the 
relationships among the African groups and the position of Yoruba as a proxy for 
non-African ancestry. An East African population would likely be a better proxy, 
however the HGDP dataset does not contain a suitable population. We therefore tried 
this analysis on the Simons Genome Diversity Project (3) dataset which contains the 
Dinka population. A model with Papuan as target, Dinka, Vindija Neanderthal and 
Denisovan as sources and Chimpanzee, Altai Neanderthal, Yoruba, Mende, Biaka and 
Mbuti as outgroups fits the data (p = 0.061) and gives estimates of 2.0% (95% CI: 
1.41 - 2.59%) Neanderthal ancestry and 3.4% (95% CI: 2.42 - 4.38%) Denisovan 
ancestry in Papuans. While the exact estimates might still be sensitive to slight model 
violations, these results suggest that the level of Neanderthal ancestry in Papuans is 
similar to the levels in other non-Africans. 

 
 
Implementation of a Hidden Markov Model for archaic haplotype detection 
A hidden Markov model (HMM) was used to detect introgressed segments from the 
Neanderthal and Denisovan populations in modern human genomes. The source code is 
available at https://github.com/ryhui/hmmarc. The HMM decodes segments of haploid 
genomes (thus requiring phased haplotypes) into two hidden states: unadmixed (0) and 
archaic (1). We summarize the observed data by the pattern of allele sharing between a panel 
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of sub-Saharan African genomes, the haploid genome under examination, and a panel of one 
or more archaic genomes. Only informative sites where a derived allele is shared between 
two groups and absent in the third are considered by the HMM. For convenience, the three 
informative combinations are encoded as emission types 1, 2 and 3 (table S5). If a genetic 
segment entered the modern human population from an archaic hominin population relatively 
recently, it should share more derived variants with the archaic genomes. Since sub-Saharan 
Africa is assumed to have no or very small amounts of Neanderthal and Denisovan ancestry, 
an allele shared between African and non-African genomes would most likely have arisen on 
a lineage within the modern human population. Incomplete lineage sorting in modern 
segments might cause some African lineages to coalesce first with the archaic genomes, thus 
sharing a derived allele unseen in a non-African genome. Such observations are less likely to 
occur in the archaic segments due to the small effective size of the archaic populations. 
 
Transitions are only allowed between informative sites. Because the distance between 
informative sites is not constant, the transition probabilities are updated on-the-fly using 
genetic distance: 

𝑇 = 1 − (1 − 𝑒WXY) ∙ 𝛼 (1 − 𝑒WXY) ∙ 𝛼
(1 − 𝑒WXY) ∙ (1 − 𝛼) 1 − (1 − 𝑒WXY) ∙ (1 − 𝛼)

 

 
Where 𝑇\](𝑖, 𝑗 ∈ 0,1 ) is the probability to transit from state 𝑖 to state 𝑗, 𝑡	the time since 
admixture, 𝑑 the genetic distance either extrapolated from a genetic map or, in the absence of 
such a map, using the physical distance and a constant per-site recombination rate. The 
admixture proportion 𝛼 also defines the initial state probabilities 𝜋 = (1 − 𝛼, 𝛼). The full 
model is specified by 𝑡, 𝛼	and the emission probabilities matrix 𝐸. 
 
Model training 
Since the HMM is designed to work with a single archaic source at the time, we simulated 20 
haploid genomes under the demographic model in (fig. S14) using msprime (70), and 
obtained the maximum likelihood estimation (MLE) of model parameters based on the true 
underlying state of the genetic segments (table S6). We fixed 𝑡 at the true value of 2,000 but 
noted that varying it between 1,000 and 4,000 while keeping the other parameters unchanged 
has little influence on the decoding results. Applying this model to simulated data recovered 
90.74% of the true archaic segments, with a false discovery rate of 3.68%.   
 
We also explored the Baum-Welch algorithm and numerical likelihood optimization to train 
the HMM, however both training methods sometimes produced a minor state that absorbs 
type 2 emissions. It appears difficult to establish an archaic and a modern state from 
unsupervised training. 
 
Comparison with published methods 
In a scenario where only one archaic source of introgression is concerned, we compared the 
performance of the HMM in detecting Neanderthal segments with the S* method (37, 71), 
which searches for long haplotypes in linkage disequilibrium unseen in the African panel, 
and a method using a conditional random field (CRF) (72), which examines allele sharing, 
haplotype divergence and local recombination rate. Since the implementation of neither 
method is publicly available, we compared the result of running CRF, S* and the 
informative-site-only HMM on the same set of genomes instead. The Neanderthal segments 
detected by CRF and S* in individuals from 1000 Genomes Project were downloaded from 
the authors' websites. The HMM was then run on chromosome 1 of the 544 individuals that 
were included in both studies and the Viterbi sequences were obtained. To be consistent with 
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the other two methods, only the high-coverage Altai Neanderthal genome (16) was used in 
the archaic panel. The highest agreement is between HMM and S* (fig. S15A), where the 
shared regions constitute 72.84% of the total material recovered by the HMM and 82.43% of 
that recovered by S*. It is worth noting that although the S* score itself does not rely on the 
archaic genome, the reported segments in (37) have undergone subsequent filtering based on 
their match score to the archaic genomes. The other pairwise comparisons between methods 
only show around 40% reciprocal overlap. The overlap patterns are consistent across the 
seven Eurasian populations analyzed. 
 
Under a different metric, a segment detected by one method is treated as a match if at least 
half of it is also reported by another method. Although the HMM does not preferentially 
detect or miss segments of particular lengths compared to the two other methods, segments 
detected by the HMM but not by the other methods tend to be shorter (fig. S15B). Segments 
shorter than 50 kB constitute 91.22% of those not detected by S* and 82.37% of those not 
detected by CRF. Most segments longer than 50 kB are reported by all three methods. 
 
Distinguishing sources of archaic segments  
Since Neanderthal and Denisovan segments coexist in many non-African genomes, we also 
tested various methods to distinguish between them. We launched another set of simulations 
following the demographic model in fig. S16, where a non-African population received 3% 
gene flow from the Neanderthal population, followed by 1% from the Denisovan population. 
The two-state HMM can be extended to include a Neanderthal state, a Denisovan state and a 
modern state, but this model showed very high false discovery rate (i.e. mislabeling 
unadmixed segments as archaic) on simulated data. Instead, we ran the two-state HMM twice 
with the same model parameters, first with two Neanderthal genomes in the archaic panel, 
then with the Denisovan genome. The posterior probabilities of the archaic state at each 
informative site from both runs, pN and pD, were used to assign them into the following 
categories: 

• If pN ≤ 0.5 and pD ≤ 0.5, tagged as “modern”; 
• If pN > pD and pD < 0.8, tagged as “Neanderthal”; 
• If pD > pN and pN < 0.8, tagged as “Denisovan”; 
• If pN ≥ 0.8 and pD ≥ 0.8, tagged as “ambiguous archaic”. 

If a site only showed up as informative regarding the Neanderthal run or the Denisova run, 
the missing pD or pN was extrapolated linearly by physical distance from adjacent sites. The 
Neanderthal, Denisovan and ambiguous archaic segments were identified by linking 
neighbouring sites in the same category.  
We found that this approach reduces the false discovery rate in simulations to around 0.05, at 
the cost of pooling a large proportion of archaic segments into the ambiguous category. The 
probability of labeling true Neanderthal segments as Denisovan is also below 0.05, and even 
lower the other way around. The criteria for assigning the categories based on pN and pD can 
also be adjusted according to the needs of downstream analyses, reflecting a trade-off 
between type 1 and type 2 errors. In analyses involving the haplotypes of Neanderthal and 
Denisovan segments, we used a more stringent set of criteria to obtain a “strict” set of archaic 
segments: 

• If pN ≥ 0.8 and pD < 0.5, tagged as “Neanderthal”; 
• If pD ≥ 0.8 and pN < 0.5, tagged as “Denisovan”. 

In simulated data, this reduced the proportion of true Neanderthal segments to 0.016 among 
predicted Denisovan segments, and the proportion of true Denisovan segments to 0.0013 
among predicted Neanderthal segments. 
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Detecting Neanderthal and Denisovan segments in modern populations 
The two-state HMM was run twice on the 929 phased HGDP genomes with a genetic map to 
obtain the posterior probabilities of being in the Neanderthal and Denisova state at all 
informative sites. All 104 genomes from sub-Saharan Africa were included in the African 
panel, but when extracting observations, we allowed the archaic allele to reach a maximum 
frequency of 0.01 in this panel to allow for small amounts of archaic ancestry within Africa. 
Two high-coverage Neanderthal genomes, one from Denisova cave (16) and the other from 
Vindija cave (20), were used in the archaic panel in the Neanderthal run whilst the Altai 
Denisovan genome (11) was used in the Denisova run. In addition to the HGDP accessibility 
mask, we also included a low complexity regions mask (73). All sites that do not pass the 
masks were ignored as non-informative in the HMM runs. We used the ancestral sequences 
from Ensembl EPO alignment to determine the ancestral state; and in case of unknown sites 
in this panel, assumed the genotype in chimpanzee (Pan_tro 3.0) to be ancestral. Only sites 
that are polymorphic in the HGDP dataset were retained after merging. In effect, this leaves 
out derived sites shared by all modern human genomes but not the archaics, which are type 2 
emissions (table S5) that supports assigning the modern state. However, such sites should be 
very rare in the genome, as derived alleles shared by all modern humans will be older than 
200k years. 
 
We obtained two sets of archaic segments following the first (hereafter the “basic” set) and 
the second (hereafter the “strict” set) criteria described in the previous section. In practice, 
the “basic” set assigns less material to the ambiguous category than in simulation studies, 
such that the actual distinguishing power is expected to be greater than in the results in the 
simulations.  
 
Robustness of HMM to parameter misspecification 
To explore the impact of parameter misspecification, we altered the model in table S6 in the 
following ways: 1. Halving and doubling π1, the proportion of archaic ancestry; 2. Halving 
and doubling t, the time of admixture; 3. Increasing and decreasing each entry in the emission 
matrix by 10% (unless the new value exceeds 1), while scaling the other two entries in the 
same row proportionally such that each row sums to 1. We compared archaic segments 
detected on chromosome 1 using these altered models to the segments obtained using the 
original model in 10 randomly-drawn individuals from each geographical region. Table S7 
shows the proportion of Neanderthal and Denisovan segments that are still detected following 
the “basic” criteria. The concordance is high except when we drastically reduce E1,2 (the 
probability of emitting a variant absent in the African panel and shared with the archaic 
genome when the true state is archaic) from 0.9981 to 0.8983, which correspondingly makes 
the model over 50 times more permissive to observing variants shared between the African 
panel and the archaic genomes, or between the African panel and the genome under study. 
Even in this case, the concordance only falls below 0.8 in regions with very low level of 
archaic ancestry (notably Denisovan ancestry in Europe and the Middle East). 
 
Geographical distribution of archaic ancestry 
Fig. S17A compares the average amount of Neanderthal, Denisovan and ambiguous segments 
identified in the HGDP genomes (from the “basic” set) by geographical region, and fig. S17B 
shows the mean and standard deviation of the amount of Neanderthal and Denisovan 
segments identified in each population. The length of masked regions was excluded in all 
plots. 
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Very few archaic segments are detected in sub-Saharan African populations, but this is 
expected on technical grounds alone as our method conditions on allele frequencies in these 
populations. In accordance with previous studies, the amount of Neanderthal ancestry is 
higher in East Asia and the Americas than in Europe and the Middle East. The highest 
amount of Neanderthal ancestry is found in Oceania, but this is likely an artefact caused by 
some misclassified Denisovan segments. No prominent differences are observed between 
populations within the same geographic regions (fig. S17B). The intra-population variance is 
higher in Middle Eastern populations (especially Mozabite and Bedouin), likely reflecting 
recent admixture between sources with different levels of Neanderthal ancestry (e.g. African 
and West Eurasian). Denisovan segments are most abundant in Oceania (fig. S17A). They are 
also detectable at much lower levels in East Asia, the Americas and Central and South Asia, 
but negligible in Europe and the Middle East. Within Oceania, the Bougainville population 
has less Denisovan ancestry than the two populations from New Guinea (fig. S17B), 
consistent with dilution due to Southeast Asian admixture in the former.  
 
All archaic segments in the “strict” set were pooled by geographical region to obtain maps of 
archaic ancestry frequencies along the genome. Fig. S18 depicts the distribution of 
Neanderthal and Denisovan segments along chromosome 1 as an example.  
 
The difference between Oceania and other non-African populations appears more 
pronounced in the distribution of Denisovan than Neanderthal segments (fig. S18). To 
address this more formally, we quantified the length of overlapping genomic regions 
throughout the genome covered by at least two archaic segments between pairs of 
geographical regions, regardless of the genotypes in the segments (table S8). P(A|B) here 
denotes the probability that a genomic region being observed in geographical region A, 
conditioned on it being observed in geographical region B. The geographical structure is 
stronger in the genomic distribution of Denisovan segments with less overlapping between 
America, East Asia, Central/South Asia and Oceania. Denisovan segments might have been 
lost through genetic drift more often or sampled less frequently than Neanderthal segments 
because of their low frequency in most populations; however, despite similar amount of 
Neanderthal and Denisovan ancestry in Oceania, P(Oceania|non-Oceania) is also lower for 
Denisovan segments than for Neanderthal regions. This indicates that the local landscapes of 
Denisovan ancestry across the genome is less similar between Oceanian and Eurasian 
populations than what the Neanderthal landscapes are. Neanderthal ancestry therefore 
probably results from a less complicated admixture history than Denisovan ancestry. 
 
 
Divergence of archaic segments to archaic genomes 
All Neanderthal and Denisovan segments from the “strict” set in each genome were 
compared with the Altai Neanderthal, Vindija Neanderthal and Denisovan genomes. To 
recover archaic-private variants that were not present in files produced by merging variants-
only modern VCFs with all-sites archaic VCFs, we assumed that all modern sites passing the 
strict mask but not present in the VCF files carried the reference allele; if these sites also pass 
the respective archaic mask and appear in the archaic all-sites files with alternative alleles, 
they also contribute to the counts of differences.  
 
The overall patterns of divergence to the Neanderthal genomes are almost identical across all 
six geographical regions (fig. S19A), while the patterns of divergence to the Denisovan 
genomes follow visibly different shapes in East Asia and Oceania: the points in Oceania form 
a well-defined single cluster; in East Asia, the pattern appears more noisy, with additional 
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segments displaying low divergence to the Altai Denisovan genome (divergence less than 
~0.0001) that are absent from the Oceanian populations. This component is also potentially 
visible in America and Central/South Asia. We quantified the similarity in archaic divergence 
distributions between pairs of regions using the statistic D from the Kolmogorov-Smirnov 
test, after downsampling Neanderthal and Denisovan segments in each geographical region to 
match the minimum number (1980), to avoid any effects arising from unequal total amounts 
of segments. These tests confirm that Oceanian populations are less similar to East Asian and 
American populations in the divergence of Denisovan segments to the Altai Denisovan 
genome..: 

DAmerica_EastAsia = 0.069 
DAmerica_Oceania = 0.152 
DEastAsia_Oceania = 0.180 

… than in the divergence of Neanderthal segments to the Vindija Neanderthal genome: 
DAmerica_EastAsia = 0.032 
DAmerica_Oceania = 0.027 
DEastAsia_Oceania = 0.032 

 
Thus in pairwise comparisons between East Asians, Americans and Oceanians, distributions 
of Neanderthal segment divergence from the Vindija Neanderthal are similar in all three 
cases, whereas distributions of Denisovan segment divergence from the Altai Denisovan 
show much more similarity between East Asia and America than between either population 
and Oceania. This strongly suggests a distinct mix of introgressed ancestry in Oceanian 
Denisovan segments, but not Neanderthal segments. 
 
These results corroborate the finding from (39) of an additional pulse of Denisovan gene flow 
into East Asia. However, it is also worth noting that similarity in relation to known archaic 
genomes does not guarantee that the source is the same, since different source populations 
might show identical relationships to a given archaic individual. Based on evidence from 
nucleotide diversity and haplotype networks described below, we find it plausible that at least 
some of the Denisovan ancestry in East Asian (maybe also other Eurasian and American) 
populations results from an admixture event separate from that in Oceanian populations. The 
structure in the East Asian patterns of Denisovan divergence (fig. S19B) might be due to 
partially overlapping distributions of divergence from the two components of admixture, or 
might possibly reflect an even more complicated history of admixture from several source 
populations at various locations and times.  
 
 
Nucleotide diversity within archaic segments 
Within one population, the expected number of nucleotide differences per site between two 
randomly drawn haplotypes is commonly known as nucleotide diversity (π). When 
comparing two populations, the same expected value between sequences randomly drawn 
from two populations (excluding all comparisons within the same population) is commonly 
known as absolute divergence (DXY, also referred to as πXY , πB or dXY in the literature) (74). 
Based on the “strict” set of result, three sets of DXY between all pairs of populations were 
obtained: values calculated from only the Neanderthal segments in the genomes, from only 
the Denisovan segments in the genomes, and from only the unadmixed (also referred to as 
“modern” hereafter) segments of the genomes. 
 
In this context, a “haplotype” refers to the collection of all Neanderthal (or Denisovan or 
modern) segments found in the same haploid genome. Since introgressed segments typically 
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span different genomic regions in different individuals, it is only meaningful to compare 
nucleotide differences in the overlapping regions of two haplotypes (fig. S20). To limit 
computational costs when calculating DXY in Neanderthal segments, if the sample size of a 
population exceeds 10 individuals, only 20 haplotypes are randomly drawn for pairwise 
comparison with a maximum of 20 haplotypes from the other population (we found repeated 
draws produced very similar results); this cap was not applied to Denisovan segments, which 
are more scarce outside Oceania. 
 
Neanderthal vs. unadmixed regions 
The absolute divergence in Neanderthal regions (DXY -N) and in unadmixed regions (DXY -M) 
are colour-coded onto the upper-right and lower-left triangles, respectively, of a matrix in a 
heatmap (Fig. 6A). All DXY -M and DXY -N values were normalised such that variation within 
each is displayed using the same colour scale. Neighbour-joining trees were built using DXY 
as distances (fig. S21). If there was a separate pulse of archaic admixture into some 
population(s), the recipient populations is expected to appear as an outgroup in the tree 
reconstructed from archaic segments. If this pulse was much more recent than the shared 
pulse elsewhere, the length of the tip branches would also appear shorter. The populations in 
Fig. 6A are ordered according to the neighbour-joining tree built with DXY -M values using San 
as outgroup (fig. S21A). The heatmap is generally symmetrical: the pattern in Neanderthal 
segments largely mirrors that in unadmixed segments, forming major clusters separating 
Oceanian, American, East Asian and European-Central/South Asian populations. This pattern 
is also reflected in the unrooted neighbour-joining tree built from DXY -N (fig. S21B). 
 
The symmetry is broken on finer scales. DXY -N between the North African Mozabite and 
European/Middle Eastern populations appears lower than that between some Central/South 
Asian populations and the latter; in fact, it is almost as low as comparisons within Europe. 
But in terms of DXY -M all Central/South Asian populations are closer to European/Middle 
Eastern ones than to Mozabite. Most likely this is because the sub-Saharan African ancestry 
in Mozabite increases DXY -M to Europe/Middle East, but the Neanderthal ancestry in 
Mozabite remains what was received from the same source as Europe/Middle East. The 
values in the cluster in the lower right corner, including populations from Europe, the Middle 
East and Central/South Asia (excluding three with high genetic affinity to East Asia), were 
normalized again excluding other populations (fig. S21D). Now a European cluster can be 
distinguished, yet the relationships involving the Middle East and Central & South Asia are 
not well-defined. A history involving complex admixtures among the ancestors of these 
various groups, especially if including sources with no or very low levels of Neanderthal 
ancestry (including sub-Saharan Africans and the proposed basal Eurasian lineage (38, 75)), 
could have contributed to these patterns. 
 
Denisovan vs. unadmixed regions 
Fig. 6B shows the normalised absolute divergence in Denisovan segments (DXY -D) and 
unadmixed regions (DXY -M). The three Oceanian populations form a sister clade relative to all 
East Asian and American populations in unadmixed segments but exhibit very high 
divergence to all other populations in Denisovan segments. Their DXY -D to other non-African 
populations is largely homogenous, with only a faint affinity to East Asian populations. The 
Bougainville population displays lower DXY -D to East Asian populations than the other 
Oceanian populations, consistent with some Southeast Asian ancestry in Bougainville.  
 
In Cambodians, the Denisovan segments show increased divergence to other East Asian 
populations, but decreased divergence to Oceanian populations in comparison to the 
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unadmixed segments. In the tree built from DXY –D (fig. S21C), the Cambodian branch in also 
slightly longer in relation to other East Asian and American populations. Similarly to the 
much more prominent behavior of Oceanians, this evidence may suggest the presence of 
another component of Denisovan ancestry in Cambodians, with tentative connection to that in 
Oceania. One possibility is that this behavior might be driven by some fraction of South 
Asian related ancestry in Cambodians, which is likely not found in the other East Asian 
populations in the panel.  
 
Correspondingly in the unrooted DXY -D tree (fig. S21C), the branch leading to the Oceanian 
populations is so long that rooting by midpoint places the root there. Cambodians then lie 
basal to all other Eurasian and American groups. The relatively low levels of Denisovan 
ancestry in most parts of the world likely adds noise to these inter-population comparisons.  
 
Neanderthal vs. Denisovan regions 
Fig. S22 directly compares intra- and inter-population divergence in Neanderthal and 
Denisovan segments, again highlighting the distinct Denisovan ancestry in Oceania: in all 
comparisons excluding Oceanians, we again observe a strong correlation between DXY -D and 
DXY -N, with the former typically smaller than the latter; in contrast, almost all comparisons 
including Oceanian populations show higher DXY -D than DXY -N, and deviate from the 
otherwise largely linear relationship. 
 
 
Archaic haplotype networks 
We attempted to reconstruct the relationships between all the archaic segments identified in 
different individuals in a given region of the genome. Assuming two archaic sequences 
descend from the same ancestral sequence at the time of admixture and a mutation rate of 
1.25 × 10-8 per site per generation, after 2,000 generations one would only expect to observe 
one difference per 20 kB. Long regions covered by as many archaic haplotypes as possible 
are therefore necessary to achieve a reasonable resolution. We searched for candidate regions 
in the genome by the following procedure: 

• A multiple intersection of all Neanderthal/Denisovan segments (the “strict” set) on 
each chromosome was performed using multiIntersectBed from BEDTools (61) to 
obtain the total number of archaic haplotypes in a given genomic interval; 

• The list of intervals was scanned to add new intervals by merging adjacent ones if a 
subset of individuals are present in both; 

• A score is also assigned to each interval based on the length (L) and the number of 
samples (n): 

s = nw ⋅ L 
 

where w can be tuned to adjust the weight of including more haplotypes over extending the 
genomic region; here we fixed it at 1, hence the score equals the total length of archaic 
sequences in the interval;  

• Intervals shorter than 50 kB or with fewer than 5 occurrences were removed;  
• Non-overlapping intervals with the highest scores were collected following a greedy 

algorithm: within a minimal candidate set of intervals that do not overlap with any 
other, the interval with the highest score is selected and moved to the selected set, and 
any other intervals that overlap with it removed from the candidate set; next to be 
selected is the interval with the highest score among the remaining ones in the 
candidate set, and so on; the process repeats until no interval remains in the candidate 
set, and the algorithm moves on to the next set of intervals.  
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We constructed phylogenetic trees and haplotype networks using aligned archaic segments. 
Fewer than 4% of the genomic regions that we considered are longer than 0.2 Mb, so 
recombination between archaic segments is unlikely. When very few differences exist 
between haplotypes, or if recombination does occur between close haplotypes, haplotype 
networks have the advantage of allowing alternative links other than imposing a bifurcating 
tree with high uncertainty. The median joining network algorithm implemented in the pegas 
R package (76) was used to construct haplotype networks. Preliminary analysis also showed 
that the time to the most recent common ancestor (tMRCA) estimated from haplotype 
network analysis and maximum likelihood trees were highly correlated, although alternative 
links in the network tend to reduce tMRCA, especially when the sample size is large.  
 
In each interval, polymorphic sites in all archaic haplotypes were retrieved to form a 
sequence alignment for haplotype network analysis. If a singleton allele among the archaic 
haplotypes was also present at a frequency above 1% in sub-Saharan African populations, we 
considered it was likely the result of phasing error and ignored it. 
 
A total of 4,153 Neanderthal haplotype networks and 727 Denisovan ones were constructed 
using identified segments in all non-African genomes. A few examples are shown in fig. S23 
and fig. S24. The sizes of the networks range from 3 to over 200 nodes. In some networks, 
haplotypes from the same geographical region cluster together (e.g. fig. S23A and fig. S24A), 
but in others identical haplotypes can be found across distant geographical regions (e.g. fig. 
S23B and fig. S24B). The Neanderthal haplotypes do not clearly tend to fall into separate 
clusters, as would be expected if there were multiple admixture events, whilst Denisovan 
haplotypes in Oceania are often separated from those in other geographical regions. 
 
Age of archaic haplotype networks 
To estimate the number of founding lineages contributing to extant haplotypes, we calculated 
the age (ρ) of each network (equivalent to tMRCA, or the height of a phylogenetic tree). The 
haplotype closest to the Vindija Neanderthal genome was assumed to be the root node. 
Following (77), ρ is measured as the average shortest distance from all nodes to the root: 
 

 
 

and the variance: 
 

 
 

where n is the number of sequences, m the total number of edges, and ni the number of 
samples whose shortest route to the root node passes through the ith edge. ρ can then be 
converted into time in years with the mutation rate and the number of comparable sites in the 
genomic region. 
 
Fig. S25A shows the distribution of Neanderthal and Denisovan network ages in years. 
Filtering networks based on the length of the genomic region passing the mask, average B 
value of the genomic region, the number of missing sites in archaic genomes, the number of 
sites skipped (singletons also present in Africa), or the total number of polymorphic sites 
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does not alter the shape of the distribution visibly; nor do these values exhibit distinct 
distributions between the groups of largest and smallest networks. 
 
The age distribution from the two archaic sources are similar, both reaching the highest 
density below 50k years. The median of the Neanderthal and Denisovan haplotype networks 
are 55,613 and 55,070 years, respectively. However, in the tail of the distributions we also 
observe networks that are hundreds of thousands of years old.  
 
To explore how the number of introgressing lineages qualitatively changes the shape of the 
network age distribution and the accuracy of the inferred network age, we also constructed 
median joining networks on simulated haplotypes conditioned on the maximum number of 
introgressing haplotypes, using the simplified demographic history shown in fig. S25B. The 
sample sizes in Eurasia (including East Asia, Central/South Asia, the Middle East, and 
Europe), Oceania, and America populations were specified to match the geographical origin 
of actual Neanderthal haplotypes observed in each genomic region. The number of 
introgressing haplotypes was measured as the number of surviving lineages 2,000 generations 
ago, that is (backward in time) at the end of the bottleneck associated with admixture (which 
could also be an effect of negative selection). The duration and size of the bottleneck was 
arbitrarily selected to efficiently sample genealogies with few introgressing haplotypes, as the 
probability of getting a small number of surviving lineages at the time of introgression is too 
low without a bottleneck. For each genomic region used to construct a haplotype network, 
coalescent trees were repeatedly simulated with a matching sample size, until the number of 
introgressing haplotypes became equal or less than the desired maximum. Genetic sequences 
of a length matched to the genomic region after filtering were then generated from the tree. In 
principle, the choices of bottleneck severity and ancestral Neanderthal size will influence the 
distribution of the coalescent trees retained; yet we found that in practice the effects on the 
age distribution was minimal.  
 
Three sets of 4,153 genealogies with at most 1, 2 and 4 founding haplotypes respectively 
were obtained, to match the 4,153 genomic regions used in Neanderthal haplotype network 
analysis. The same algorithm used on the empirical data was used to build haplotype 
networks for each simulated alignment dataset and estimate ρ. The distribution of ρ 
reasonably reflects the true tMRCA (fig. S25C). By allowing alternative links, the age 
estimated from haplotype networks can potentially underestimate the age of moderately old 
networks, but not the extremely old ones in the right tail of the distribution. The number of 
unique haplotypes in simulated and in empirical data align along the identity line with a 
strong correlation in all three sets of simulations, validating that the demographic model used 
in the simulations is a reasonable approximation of the true history. 
 
Fig. 6C compares the distribution of network ages estimated from empirical data and three 
sets of simulated data. The empirical distribution clearly differed from that produced in 
simulations with only one founding haplotype, yet its overall shape appears shifted towards 
the left in comparison to the curves produced in simulations with a maximum of two and four 
haplotypes. The shift could result from negative selection against archaic haplotypes or sub-
population structure not implemented in the simulations. The simulations with a maximum of 
two and four haplotypes generated very similar distributions. As few as two founding 
haplotypes (i.e one individual) appear sufficient to produce the number of very old haplotype 
networks observed. A much larger number of Neanderthal individuals could still have been 
involved, contributing a reduced number of distinct haplotypes depending on the genetic 
diversity of the Neanderthal population. The combined effects of negative selection, genetic 
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drift, dilution etc. could then have further reduced the diversity of the introgressed 
Neanderthal material to a very low level. 
 
Number of founding lineages 
The estimates of the ages of the haplotype networks reflect the genome-wide average number 
of founding archaic haplotypes. Here we estimate the number of founding archaic haplotypes 
in each genomic region as the number of surviving lineages in the tree at the time of 
admixture. 
 
For each of the 4,135 genomic regions, a maximum likelihood tree was built from the 
sequence alignment and rooted by the haplotype closest to a San individual (HGDP00991). 
We chose to work with the tree structure rather than network here mainly because it more 
easily enables bootstrap analyses. The height at each node was determined by assigning 
height 0 to the tip farthest from the root, and positive heights to all other nodes, with the 
largest value at the root. Then the tree is truncated at the height corresponding to the expected 
number of differences per base pair in the time since admixture - assumed to be 2,000 
generations - and the number lineages remaining connected to the root is counted. To gauge 
uncertainty, 1,000 non-parametric bootstrap replicates were performed for each genomic 
region.  
 
Fig. S26 shows the number of founding haplotypes in 100 randomly sampled genomic 
regions, and Fig. 6B shows the distribution of the mean number from all genomic regions. 
The estimated number of haplotypes were mostly low: in over 70% of the trees, the value of 
two standard deviations below the mean is lower than 2. However, there are also cases where 
more than 10 or even 20 lineages existed at the time of introgression. A total of 17 genomic 
regions were estimated to have more than 20 founding Neanderthal haplotypes (table S9); 
their haplotype networks exhibit complicated structures radiating from one or two core 
haplotypes. It could mean that initially around a dozen (or more, depending on their 
relatedness) Neanderthal individuals contributed material, but except for very few regions of 
the genome, most Neanderthal lineages were subsequently lost through genetic drift and 
negative selection, so that only a handful of them remain among the diversity of Neanderthal 
segments in present-day modern humans. 
 
Geographical separation 
Deep splits in a haplotype network could reflect multiple sources of archaic gene flow. To 
measure the divergence between geographic regions, we define two regions as separate in a 
network if none of the nodes containing haplotypes from one region has a closest neighbour 
containing haplotypes from the other region, and vice versa. Table S10 displays the total 
number of haplotype networks analyzed in this way (which need to contain at least two 
haplotypes from each region), and the number of networks showing separation between pairs 
of geographical regions. 
 
The diversification among modern human populations will have caused some divergence in 
the archaic segments even if they descended from the same source of admixture. The 
proportion of completely geographically separated Neanderthal haplotype networks is largely 
consistent with our understanding of non-African population history. Much fewer Denisovan 
haplotype networks are available for comparison, yet there is a deep split between Oceania 
and all other non-African regions: networks are completely separated in almost all cases, 
most strikingly between Oceania and East Asia, as well as between Oceania and 
Central/South Asia. Fisher’s exact test confirms that the distributions of fully separated 
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Neanderthal and Denisovan networks are significantly different in these two comparisons 
(table S11). Another pair that show a near-significant difference is Central/South Asia and 
East Asia, but in this case they are better connected in Denisovan networks than in 
Neanderthal networks. Overall, if we take the Neanderthal networks as representative of a 
single-source scenario, the strong geographical separation between Oceania and other regions 
in the Denisovan haplotype network provides further evidence for different source 
populations of Denisovan haplotypes in Oceanian and Eurasian populations. 
 
It is notable that in the only two networks where Denisovan haplotypes in Oceania are not 
fully separated from those in Central/South Asia, Oceania and East Asia are also connected. 
Out of the five networks where Oceania and East Asia are not separated, three involve 
Denisovan haplotypes from Cambodia as a bridge: in two cases the Cambodian haplotype is 
the sole connection, in another one a haplotype from Lahu is also involved. One possibility is 
that Cambodian ancestry contains a component that is somewhat intermediate between or 
similarly related to Oceanian and East Asian ancestries (e.g. South Asian related). But since 
this connection to Oceania is not observed in unadmixed regions of the genome (Fig. 6B), it 
could also possibly suggest another independent component of Denisovan ancestry in 
Cambodians, whose source population is closer to the source in Oceania. 
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Fig. S1. Sample specific mapping quality caps offsets the effects of index hopping on 
genotype accuracy. (A) The FREEMIX contamination estimate strongly correlates with 
array genotype discordance (non-reference discordance, NRD) in the multiplexed Sanger 
PCR-free libraries. (B) The application of sample specific mapping quality caps as a function 
of the FREEMIX estimate decreases the genotype discordance. 
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Fig. S2: The effects of cell-line chromosomal copy number alterations. (A) The fraction 
of heterozygous genotypes not correctly called in pseudo-diploid datasets constructed from 
two male X chromosomes down-sampled to varying degrees corresponding to copy number 
alterations of varying levels of severity, relative to a case with perfectly balanced copy 
number. Ten replicate experiments were performed for the balanced copy number case, the 
results of which are represented by box plots. The experiment was performed at three 
different levels of overall coverage; 25x, 30x and 35x. (B) Sequencing coverage of 
chromosomes X and Y for all sequenced samples, relative to the genome-wide coverage, 
coloured by the self-identified gender of the sample donor. (C) Sequencing coverage in our 
generated sequencing data of a chromosome in a sample against the fraction of heterozygous 
genotypes on that chromosome in that sample (normalized by chromosome and population) 
in a previously published array genotype dataset (8), displayed for two typical chromosomes 
as well as chromosomes 9 and 12 which display the largest number of whole-chromosome 
copy number alterations.  
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Fig. S3: Testing for genotype batch effects between libraries of different sources. (A) 
The first two principal components (from analyses using genotypes on sites ascertained as 
polymorphic in archaic genomes, calculated using AKT: https://github.com/Illumina/akt) 
with sample colours indicating the combination of library source and library type, and 
symbol type indicating geographical region. Library source and type does not visibly seem to 
affect the clustering of samples. (B) The third and fourth principal components. (C) For each 
of the first 50 principal components, sample colour indicates whether their source is Sanger 
(blue) or SGDP (red). A subset of Sanger libraries was sampled at random to match the 
population composition of the SGDP libraries, and a Wilcoxon rank sum test was performed 
to test for differences in the placement along each principal component between the SGDP 
and the Sanger libraries. The resulting p-values are displayed under the data for each 
component. Only one component, PC16, displays a difference with p < 0.05, though this is 
driven by a few outlier samples and is not statistically significant considering the 50 tests 
performed. 
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Fig. S4. The effects of variant ascertainment on population genetic analyses. (A) 
Comparisons of all possible f4-statistics involving the 54 populations calculated using 
different sets of ascertained sites, against the values calculated using all discovered variants. 
Points are coloured according to the number of African populations included in the statistic. 
(B) Estimates of individual ancestry components using ADMIXTURE at k=5, at which the 
five components correspond well to five major regional ancestries. Compared to using the Li 
2008 array sites, the sites ascertained in archaic genomes leads to cleaner ancestry estimates 
with less “leaking” of a given regional ancestry component into individuals outside that 
region. (C) Estimates of FST for a selection of population pairs, grouped by region, using the 
Li 2008 array sites (“li2008”), the Human Origin 2012 sites (“ho2012”), the MEGA array 
sites (“mega”), all variants discovered in the sequencing data (“all”), all variants excluding 
singletons (“all.c2”) and variants ascertained in archaic genomes (“archaics”). Each line 
connects the FST values for one pair of populations across the different set of sites. 
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Fig. S5. Further properties of geographically restricted variants. (A) Non-cumulative 
counts of region-specific SNPs. As Fig. 3A, but non-cumulative, displaying the number of 
variants in each 2.5% frequency bin. The larger degree of fluctuation between bins for 
Oceania reflects the lower sample size for this region. (B) Assessing the statistical 
significance of the high number of high-frequency private Oceanian CNVs. The solid line 
displays the number of CNVs private to Oceanian populations that have an allele frequency 
in those populations equal to or higher than the corresponding value at the horizontal axis. 
The dashed lines are the results of 1000 random samples of equal numbers of private 
Oceanian SNPs, displaying only the most extreme 12 samples out of these that contained a 
variant reaching as high a frequency as the highest-frequency observed CNV. 
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Fig. S6. MSMC2 analyses of divergences between African and non-African populations. 
Curves were computed using 4 physically phased haplotypes per population. (A) Yoruba 
versus non-African populations. (B) Biaka versus non-African populations. (C) Mbuti versus 
versus non-African populations. (D) San versus non-African populations. (E) Yoruba versus 
eastern non-African populations, comparing the results obtained with physical phasing to 
those obtained with statistical phasing. (F) San versus eastern non-African populations, 
comparing the results obtained with physical phasing to those obtained with statistical 
phasing. 
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Fig. S7. Testing diploid batch effects in MSMC2. Curves are displayed that use different 
numbers and configurations of haplotypes from each of the two populations. The “four 
haplotypes from two individuals” curves are from the standard runs that are also displayed in 
Fig. 5 (a total of eight haplotypes in the run across the two populations). The “Two 
haplotypes from the same individual” curves use two haplotypes from one individual from 
each population (a total of four haplotypes in the run). The “Two haplotypes from different 
individuals” curves also use two haplotypes from each population (a total of four haplotypes 
in the run), but from two different individuals. For these latter two runs with four haplotypes, 
there are two independent replicate curves using different pairs of individuals.  
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Fig. S8. Signals of archaic gene flow in MSMC2 curves. Results of cross-population 
MSMC2 runs, zooming in on the signal of Neanderthal genome flow in modern human 
genomes (note the highly reduced range of the vertical axis). (A) Archaic genomes against 
non-African genomes. (B) Archaic genomes against non-African genomes, attempting to 
adjust for the age of the archaic specimens. (C) Archaic genomes against African genomes. 
For each African population, curves for two different individuals are displayed in the same 
colour. (D) Archaic genomes against African genomes, attempting to adjust for the age of the 
archaic specimens. 

  

Vindija Neanderthal

Time (k years)

C
C

R

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Druze

Han

Karitiana

PapuanHighlands
PapuanSepik
Pathan

Pima
Sardinian

Yakut Altai Neanderthal

Time (k years)

C
C

R

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10
Denisovan

Time (k years)

C
C

R

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Vindija Neanderthal
(shifting rates by 52,000 years)

Time (k years)

C
C

R

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10
Altai Neanderthal

(shifting rates by 122,000 years)

Time (k years)

C
C

R

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Time (k years)

C
C

R

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Vindija Neanderthal

Time (k years)

C
C

R

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10 Altai Neanderthal

Time (k years)

C
C

R

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10 Denisovan

Time (k years)

C
C

R

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Vindija Neanderthal
(shifting rates by 52,000 years)

Time (k years)

C
C

R

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10 Altai Neanderthal
(shifting rates by 122,000 years)

Time (k years)

C
C

R

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Time (k years)

C
C

R

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Druze

Han

Karitiana

PapuanHighlands
PapuanSepik
Pathan

Pima
Sardinian

Yakut

Druze

Han

Karitiana

PapuanHighlands
PapuanSepik
Pathan

Pima
Sardinian

Yakut

Druze

Han

Karitiana

PapuanHighlands
PapuanSepik
Pathan

Pima
Sardinian

Yakut

Druze

Han

Karitiana

PapuanHighlands
PapuanSepik
Pathan

Pima
Sardinian

Yakut

Druze

Han

Karitiana

PapuanHighlands
PapuanSepik
Pathan

Pima
Sardinian

Yakut

Biaka
Mbuti

San
Yoruba

Biaka
Mbuti

San
Yoruba

Biaka
Mbuti

San
Yoruba

Biaka
Mbuti

San
Yoruba

Biaka
Mbuti

San
Yoruba

Biaka
Mbuti

San
Yoruba

  

Denisovan
(shifting rates by 72,000 years)

Denisovan
(shifting rates by 72,000 years)

A

B

C

D



	 39	

 
Fig. S9. Evaluating the robustness of running MSMC2 on unphased, archaic genomes. 
(A) Coalescent simulations were performed to approximately mirror the history of divergence 
and admixture between modern humans and Neanderthals, with a divergence at 500 kya, 
tenfold reduction in effective size in the second population from 400 kya and admixture from 
the second into the first population at 50 kya. The inference was rerun after stripping the 
haplotype phase from the genome sampled from the lower-diversity population, but this does 
not substantially affect the inferred relative cross-coalescence curve. (B) Block bootstrapping 
across the genome was performed to evaluate the robustness of the Neanderthal gene flow 
signal in a Yoruban genome. The curves for all 50 bootstrap replicates are plotted together. 
The curve for a Sardinian genome is included for comparison purposes. 
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Fig. S10. Technical assessments of SMC++ effective population size inferences. (A) For 
selected populations, each individual curve displayed is an independent SMC++ run 
performed on a bootstrap dataset constructed from blocks across the genome. 50 replicates 
per population were analysed. (B) The effects of stopping the inference earlier on selected 
populations. Most populations are not affected much by this, but the Native American 
(Karitiana) population displays a pronounced period of growth between 10 and 20 kya. (C) 
The effects of decreasing the regularization parameter on selected populations. Many 
population display clearly artefactual behaviours, but they do not follow the same trajectory 
as the Native American population. 
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Fig. S11. Comparison of effective population size histories inferred using SMC++ and 
MSMC2. The SMC++ runs used all individuals from the given population, across six 
alternative choices of the distinguished individual so as to produce composite likelihoods. 
The MSMC2 runs used two physically phased genomes (four haplotypes) per population. 
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Fig. S12. High-level Y-chromosomal phylogeny. Branch lengths are proportional to the 
estimated times between splits. Coloured triangles represent collapsed major clades, with the 
width of the triangles proportional to the number of samples in each clade. 
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Fig. S13. Detailed Y-chromosomal phylogeny. Branch lengths are proportional to the 
estimated times between splits. The phylogeny is divided into two parts for display purposes: 
two arrows connect branches in the lower half of the phylogeny, on the left side of the dashed 
line, to their continuations in the upper half of the phylogeny, on the right side of the dashed 
line. Branch colours correspond to those in fig. S12. The haplogroup call for each individual 
is displayed alongside the sample name and population. 
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HGDP00674_Sardinian_I2a1a1a1a1a

HGDP00598_Druze_L1a1

HGDP00281_Kalash_L1a2

HGDP01202_Mandenka_E1b1a1a1

HGDP01162_Tuscan_G2a2b2a1a1b2a

HGDP00767_Japanese_C2e2

HGDP01302_Uygur_C2b1b1

HGDP00118_Hazara_C2b1c

HGDP00530_French_J2a1b1

HGDP01298_Uygur_L1a2

HGDP00631_Bedouin_J1a2b

HGDP01282_Mozabite_E1b1b1b1a1

HGDP00608_Bedouin_J1a2b

HGDP00630_Bedouin_J1a2b

HGDP00600_Druze_J2a1h2d

HGDP00678_Palestinian_J1a2b

HGDP00197_Sindhi_J1a3

HGDP00525_French_J2a1b1

HGDP00747_Japanese_D1b1d1a1

HGDP00908_Mandenka_E1b1a1a1c2c3b

HGDP01408_BantuKenya_E1b1a1a1c1a1c

HGDP01199_Mandenka_E1b1a1a1d1

HGDP00392_Burusho_J2b2

HGDP00003_Brahui_L1a2

HGDP00017_Brahui_G2a2a1b

HGDP00624_Bedouin_J1a2b

HGDP00254_Pathan_H1b2

HGDP01167_Tuscan_E1b1b1a1b1a

HGDP00937_Yoruba_E1b1a1a1d1a

HGDP00642_Bedouin_E1b1b1b2a1

HGDP01253_Mozabite_E1b1b1b1a1

HGDP01200_Mandenka_E1a2a1b1

HGDP00463_Mbuti_E2b1a1

HGDP00985_Biaka_E1b1a1a1d1a

HGDP00611_Bedouin_J1a2b

HGDP01233_Hezhen_C2e1a1a

HGDP00139_Makrani_L1a1

HGDP00808_Orcadian_I2c1a2a1a

HGDP00723_Palestinian_G2a2b2a1a1a2

HGDP01031_BantuSouthAfrica_E2b1a1

HGDP00460_Biaka_E1b1a1a1c1a1c

HGDP00104_Hazara_C2b1c

HGDP01079_Sardinian_J1a2b

HGDP00627_Bedouin_J1a2b

HGDP00912_Mandenka_E1b1a1a1

HGDP00670_Sardinian_I2a1a1a1a1a

HGDP00099_Hazara_J2a1h1

HGDP00074_Balochi_J1

HGDP01237_Hezhen_C2b1a1b1

HGDP00992_San_B2b1a2
HGDP00991_San_B2b1b

HGDP00626_Bedouin_G2a2b1a1a

HGDP00932_Yoruba_E1b1a1a1c1b

HGDP00175_Sindhi_J2b2

HGDP00043_Brahui_J1a2b

HGDP01185_Yi_D1a1a

HGDP01405_BantuKenya_E2a

HGDP00828_Japanese_D1b1a2b1

HGDP00887_Russian_I2a1b2a1b

HGDP01214_Daur_D1a1a

HGDP01406_BantuKenya_A1b1b2b

HGDP00125_Hazara_C2e1a1

HGDP00090_Balochi_E1b1b1a1b2

HGDP00173_Sindhi_J2a1

HGDP00597_Druze_J1a2b

HGDP01404_Adygei_G2a1a1a1a1a1

HGDP00458_Biaka_E1b1a1a1c1a1c

HGDP01268_Mozabite_E1b1b1b1a1

HGDP01385_Adygei_G2a2b2a1a1a2a2a

HGDP00351_Burusho_G2b1

HGDP01034_BantuSouthAfrica_E1b1a1a1c1a1

HGDP00588_Druze_J2a1a

HGDP01213_Daur_C2b1c

HGDP01308_Dai_C2

HGDP00733_Palestinian_G2a2b2a1a1a2

HGDP00029_Brahui_C1b1a1b1

HGDP00726_Palestinian_G2a2b2a1a1a2

HGDP00058_Balochi_L1a2

HGDP00629_Bedouin_J1a2b

HGDP01417_BantuKenya_E2b1a1

HGDP00769_Japanese_D1b1a2b1a1a1

HGDP00648_Bedouin_J1a2b

HGDP01317_Lahu_F2

HGDP00618_Bedouin_J1a2b

HGDP00904_Mandenka_E1b1a1a1c2a

HGDP00258_Pathan_L1a2

HGDP01247_Xibo_C2b1b1

HGDP00037_Brahui_G2a2a1b

HGDP01050_Pima_G2a2b2a1a1b1a3

HGDP00333_Kalash_J2b2

HGDP00675_Palestinian_G2a2b2a1a1a2

HGDP01296_NorthernHan_C2b1a1b1

HGDP00994_BantuSouthAfrica_E1b1b1b2b1

HGDP00907_Mandenka_E1b1a1a1c

HGDP00538_French_E1b1b1a1b1a

HGDP00078_Balochi_L1a1

HGDP00616_Bedouin_J1a2b

HGDP01397_Adygei_J2a1b

HGDP00057_Balochi_J1a2b

HGDP00423_Burusho_C2e1b1a

HGDP01269_Mozabite_E1b1a1a1d1

HGDP00931_Yoruba_B-M181

HGDP00445_Burusho_L1a2

HGDP00452_Biaka_B2b1a1c

HGDP00127_Hazara_I2a2a1a2a2

HGDP00619_Bedouin_J1a2b

HGDP00224_Pathan_H1a1d2

HGDP00962_Yakut_C2e1a1a

HGDP00725_Palestinian_G2a2b2b1

HGDP00905_Mandenka_E1b1a1a1c2c3b

HGDP01033_BantuSouthAfrica_B2a1a

HGDP00428_Burusho_H1a1d2

HGDP00464_Biaka_E1b1a1a1c1a1c

HGDP00133_Makrani_J2a1

HGDP01073_Sardinian_G2a2b2a1a1a1a1a1

HGDP01163_Tuscan_J2a1b1

HGDP01071_Sardinian_I2a1a1a1a1a

HGDP00676_Palestinian_G2a2b2a1a1a2

HGDP01153_BergamoItalian_I2a2b

HGDP01090_Biaka_B2b1a1c

HGDP00640_Bedouin_E1b1b1a1b2

HGDP00279_Kalash_L1a2

HGDP01205_Oroqen_C2b1c

HGDP00049_Brahui_G1a2a

HGDP01183_Yi_D1a1a

HGDP01419_BantuKenya_E1b1a1a1d1a2

HGDP01358_Basque_J2a1

HGDP01081_Mbuti_E1b1a1a1c1a1

HGDP01265_Mozabite_E1b1b1b1a1

HGDP00609_Bedouin_J1a2b

HGDP00131_Makrani_L1b2

HGDP00722_Palestinian_E1b1b1a1b2b

HGDP00328_Kalash_H1a1d2a

HGDP00472_Biaka_E1b1a1a1c1a1c

HGDP00025_Brahui_J2a1b1

HGDP00041_Brahui_H1a2a1

HGDP00103_Hazara_C2b1c

HGDP00319_Kalash_H1a1d2a

HGDP00620_Bedouin_E1b1b1b1a1

HGDP00478_Mbuti_B2a

HGDP00455_Biaka_E1b1a1a1d1a

HGDP00654_Bedouin_J1a2b

HGDP01260_Mozabite_E1b1a1a1d1

HGDP01069_Sardinian_I2a1a1a1a

HGDP01411_BantuKenya_E1b1b1b2b

HGDP00082_Balochi_L1a1
HGDP00248_Pathan_L1a1

HGDP01383_Adygei_G2a2b2a1a1a2a1

HGDP00893_Russian_G2a1a1a1a1

HGDP00982_Mbuti_E2b1a1

HGDP00056_Balochi_J2a1

HGDP00913_Mandenka_E1b1a1a1c

HGDP00462_Mbuti_B2a

HGDP01304_Uygur_J2a2

HGDP00940_Yoruba_E1b1a1a1c1a1

HGDP00668_Sardinian_I2a1a1a1a1a

HGDP00730_Palestinian_G2a2b2a1a1a2

HGDP00941_Yoruba_E1b1a1a1c1b

HGDP00115_Hazara_C2b1c

HGDP00604_Druze_L1a1

HGDP00039_Brahui_G2a2b2a1a1c3

HGDP00459_Biaka_E1b1a1a1c1a1c1

HGDP00201_Sindhi_J2a1

HGDP01415_BantuKenya_E1b1a1a1d1a2

HGDP00417_Burusho_L1a2

HGDP01207_Oroqen_C2e2

HGDP00895_Russian_I1

HGDP00758_Japanese_C1a1a2

HGDP00732_Palestinian_G2a2b2a1a1a2

HGDP00639_Bedouin_J1a2b

HGDP01310_Dai_C1b1a

HGDP00936_Yoruba_E1b1a1a1c1a1

HGDP00645_Bedouin_J1a3

HGDP00944_Yoruba_E1b1a1a1c1a1

HGDP01104_Tujia_C2e2

HGDP00469_Biaka_E1b1a1a1d1a

HGDP01029_San_A1b1a1a1

HGDP00528_French_H2

HGDP00752_Japanese_D1b1a2b1a1a1

HGDP00160_Makrani_J2a1h2

HGDP00309_Kalash_J2a1

HGDP01063_Sardinian_I2a1a1a1a1a

HGDP00986_Biaka_E1b1a1a1d1

HGDP01218_Daur_C2b1c

HGDP01066_Sardinian_I2a1a1a1a1a

HGDP01285_Mandenka_E1b1a1a1c2c3b

HGDP01208_Oroqen_C2b1b1a1

HGDP01283_Mandenka_E1b1a1a1

HGDP00068_Balochi_L1a1

HGDP01286_Mandenka_E1b1b1a1a1c

HGDP00810_Orcadian_I1a2a1

HGDP01086_Biaka_E1b1a1a1c1a1c

HGDP00134_Makrani_L1

HGDP00222_Pathan_G2a2b1a2a1

HGDP00145_Makrani_E1b1a1a1d1

HGDP00562_Druze_L1a1

HGDP00819_Han_O2a2a1a1a

HGDP00961_Yakut_N1c1a1

HGDP01376_Basque_R1b1a2a1a2a1a2

HGDP00171_Sindhi_R1a1a1b2a1a

HGDP00953_Yakut_N1c1a1

HGDP01151_BergamoItalian_R1b1a2a1a2b

HGDP01246_Xibo_O2a2b1a2a1

HGDP00710_Colombian_Q1a2a1a1

HGDP00533_French_R1b1a2a1a1d2

HGDP00346_Burusho_R1a1a1b2

HGDP00402_Burusho_R2a

HGDP01217_Daur_O1b1a1a1a2b

HGDP00891_Russian_N1c1a1a1

HGDP00779_Han_O2a2b1a1a1

HGDP00199_Sindhi_R1a1a1b2a1b

HGDP00234_Pathan_R1b1a2a2c1a

HGDP01012_Karitiana_Q1a2a1a1

HGDP00551_PapuanHighlands_K2b1

HGDP00753_Japanese_O2a2b1a2a1

HGDP00491_Bougainville_M2a

HGDP01337_Naxi_Q1a1a1

HGDP01216_Daur_O2a2b2a1a

HGDP01059_Pima_Q1a2a1b

HGDP01311_Dai_O1b1a1a1b2

HGDP00165_Sindhi_Q1b1b1

HGDP00948_Yakut_N1c1a1

HGDP01353_Tu_O2a2b1a2a1

HGDP00946_Yakut_N1c1a1

HGDP00031_Brahui_R1a1a1b2a1b

HGDP01057_Pima_Q1a2a1b

HGDP01180_Yi_O1b1a1a1b1b

HGDP00102_Hazara_R1b1a1

HGDP00064_Balochi_R1a1a1b2

HGDP01359_Basque_R1b1a2a1a2a1b1a1

HGDP00167_Sindhi_R1a1a1b2a2a

HGDP00080_Balochi_R1a1a1b2

HGDP00556_PapuanHighlands_S-M230

HGDP00226_Pathan_Q1a2b

HGDP00897_Russian_R1a1a1b1a2a2

HGDP01347_Tu_O2a2b1a2a1

HGDP00964_Yakut_N1c1a1

HGDP00047_Brahui_R2a

HGDP00135_Makrani_R1a1a1b2a1b

HGDP01194_Miao_O2a2a1a2a1a2

HGDP00136_Makrani_R1a1a1b2

HGDP00302_Kalash_R1a1a1b2a2a

HGDP00376_Burusho_R2a

HGDP00208_Sindhi_R1a1a1b2a1a

HGDP01328_She_O2a2b1a2a1

HGDP01300_Uygur_R1a1a1b2

HGDP00129_Hazara_Q1b1a1a2

HGDP00230_Pathan_R1a1a1b2

HGDP00947_Yakut_N1c1a1

HGDP00121_Hazara_R1b1a1

HGDP01186_Yi_O2a2b1a1a

HGDP00595_Druze_R1b1a2a1a2b
HGDP01173_BergamoItalian_R1b1a2a1a2b

HGDP00662_Bougainville_M1b1

HGDP00973_Han_O2a2b2a

HGDP00791_Japanese_O1b2a2a1

HGDP00896_Russian_Q1a1b1a

HGDP00900_Russian_R1a1a1b1a2a

HGDP01309_Dai_O2a1c2

HGDP00512_French_R1b1a2a1a2a1a2

HGDP00540_PapuanSepik_S-M230

HGDP00856_Maya_Q1a2a1a1

HGDP00750_Japanese_O1b2a1

HGDP01037_Pima_Q1a2a1b

HGDP00433_Burusho_R2a

HGDP01374_Basque_R1b1a2a1a2c1a1a1

HGDP00185_Sindhi_R1a1a1b2

HGDP01236_Hezhen_O2a2b1a2a1

HGDP00766_Japanese_O1b2a2a1

HGDP00716_Cambodian_O2a2b1a1a

HGDP00888_Russian_R1a1a1b1a1a1a1

HGDP01342_Naxi_O1b1

HGDP00070_Balochi_R2a

HGDP00795_Orcadian_R1b1a2a1a2c1b1b1a3

HGDP01155_BergamoItalian_R1b1a2a1a2b

HGDP00259_Pathan_R1a1a1b2

HGDP01095_Tujia_O1b1a1a1a1a1b

HGDP00033_Brahui_R1a1a1b2a1b

HGDP01326_Lahu_O2a2b1a2a1

HGDP00785_Han_O1a1a1a1a1

HGDP01220_Daur_O2a2b1a1a

HGDP01149_BergamoItalian_R1b1a2a1a2a1b1a

HGDP00189_Sindhi_R1a1a1b2a1a

HGDP01375_Basque_R1b1a2a1a2a1a1a1a1

HGDP00960_Yakut_N1c1a1

HGDP00382 Burusho L1a2

HGDP00519_French_R1b1a2a1a2b1a1

HGDP00052_Balochi_R1b1a2a2

HGDP01330_She_O1a1a1a1a1

HGDP01047_Pima_Q1a2a1a1

HGDP00717_Cambodian_O1b1a1a1b1a1

HGDP00892_Russian_R1a1a1b1a1b1b

HGDP00882_Russian_R1a1a1b1a1a

HGDP01019_Karitiana_Q1a2a1a1

HGDP00788_Bougainville_M1b1a

HGDP00148_Makrani_R1a1a1b2

HGDP00782_Han_O1b1a1a1a1a2

HGDP00883_Russian_N1c1a1

HGDP01372_Basque_R1b1a2a1a2c1f2d1

HGDP01294_NorthernHan_O2a1c1a1a1b

HGDP01190_Miao_O1b1a1a1a

HGDP01293_NorthernHan_N1c
HGDP01292_NorthernHan_N1

HGDP01378_Basque_R1b1a2a1a2a1a1a1a

HGDP00088_Balochi_R1a1a1b2

HGDP00755_Japanese_O1b2a1a

HGDP00330_Kalash_R2a

HGDP00555_PapuanHighlands_K2b1

HGDP00777_Han_Q1a1a1

HGDP00313_Kalash_R1a1a1b2a2a

HGDP00092_Balochi_R1a1a1b2a1b

HGDP00807_Orcadian_R1a1a1b1a3b2

HGDP00023_Brahui_R2a

HGDP01229_Mongolian_O2a2b1a1a1a2a

HGDP01332_She_O2a2a1a2a1a2

HGDP00086_Balochi_R2a

HGDP00307_Kalash_R1a1a1b2a2a

HGDP00968_Yakut_N1c1a1

HGDP01221_Daur_N1c1a

HGDP00216_Pathan_R1a1a1b2a1a

HGDP00372_Burusho_R2a

HGDP01341_Naxi_Q1a1a1

HGDP00124_Hazara_O2a1c1a

HGDP00146_Makrani_R2a

HGDP00109_Hazara_R1b1a1

HGDP01361_Basque_R1b1a2a1a2a

HGDP00106_Hazara_R1b1a1

HGDP00715_Cambodian_N1

HGDP01055_Pima_Q1a2a1a1

HGDP00522_French_R1b1a2a1a1c2a1

HGDP00005_Brahui_R2a

HGDP00775_Han_O1b1a1b

HGDP01099_Tujia_O2a1a1

HGDP01249_Xibo_N1c1a1a

HGDP01228_Mongolian_O2a2b1a2a1

HGDP00954_Yakut_N1c1a1

HGDP01295_NorthernHan_N1

HGDP00703_Colombian_Q1a2a1a1

HGDP00879_Russian_N1c1a1a2

HGDP00822_Han_O2a2b1a1a3a

HGDP00625_Bedouin_R1a1a1b1a

HGDP01192_Miao_N1

HGDP01103_Tujia_O2a2b1a2a1

HGDP01189_Miao_O1b1a1a1a

HGDP00163_Sindhi_R1a1a1b2a1a

HGDP01339_Naxi_N1

HGDP00120_Hazara_O2a1c1a

HGDP00786_Han_O1b1a2a

HGDP00541_PapuanSepik_M1

HGDP00821_Han_O2a2b1a1a3b

HGDP00144_Makrani_Q1a2b

HGDP00843_Surui_Q1a2a1a1c

HGDP00748_Japanese_O1b2a1

HGDP00969_Yakut_N1c1a1

HGDP01075_Sardinian_R1b1a2a1a2b

HGDP01101_Tujia_N1

HGDP00542_PapuanSepik_M1

HGDP01248_Xibo_O2b1a

HGDP00515_French_R1b1a2a2c1a1a

HGDP00397_Burusho_R2a

HGDP01319_Lahu_O2a1c1a6a1

HGDP01349_Tu_O1b1a1a1a

HGDP01166_Tuscan_R1b1a2a1a2b3c

HGDP01312_Dai_O1b1a1a1b1b

HGDP01181_Yi_O1b1a1a1a1a1b1

HGDP00511_French_R1b1a2a2c1a

HGDP00714_Cambodian_O1b1a1a1a1a1a1a

HGDP01203_Oroqen_N1c1a

HGDP00205_Sindhi_R1a1a1b2a1a

HGDP01224_Mongolian_N1c1a1a

HGDP00258_Pathan_L1a2

HGDP00803_Orcadian_R1b1a2a1a2c1k1a2

HGDP01193_Miao_O1b1a1a1a1a1b

HGDP00945_Yakut_N1c1a1

HGDP00264_Pathan_R1a1a1b2

HGDP00749_Japanese_O2a2b1a1a

HGDP00019_Brahui_O2a1c1a5a

HGDP01303_Uygur_O2a2b1a2a1

HGDP00549_PapuanHighlands_M1

HGDP01362_Basque_R1b1a2a1a2a1a1a1a1

HGDP00759_Japanese_O2a2a1a1

HGDP00228_Pathan_R1a1a1b2

HGDP00191_Sindhi_R2a

HGDP00877_Maya_Q1a2a1b

HGDP01174_BergamoItalian_R1b1a2a1a1c1a1

HGDP00965_Yakut_N1c1a1

HGDP00951_Yakut_N1c1a1

HGDP00886_Russian_R1b1a2a1a2c1f2c1a1b1b

HGDP01043_Pima_Q1a2a1b

HGDP01195_Miao_O2a2a1a2a1a2

HGDP01100_Tujia_O1a1a1b2a1

HGDP00143_Makrani_R1b1a2a2

HGDP01340_Naxi_Q1a1a1

HGDP00780_Han_O1a1a1a

HGDP01227_Mongolian_Q1a2a1c

HGDP00241_Pathan_R1a1a1b2

HGDP00845_Surui_Q1a2a1a1

HGDP00214_Pathan_R1b1a2a2c1

HGDP00072_Balochi_R2a

HGDP01301_Uygur_R1b1a2a2

HGDP01351_Tu_O2a2b1a2a1

HGDP00774_Han_O1a1a2

HGDP00060_Balochi_R1b1a2a2

HGDP00949_Yakut_N1c1a1

HGDP01240_Hezhen_O1b2a2a1a

HGDP00158_Makrani_R1a1a1b2

HGDP01161_Tuscan_R1b1a2a1a2b

HGDP00243_Pathan_R1a1a1b2a1b

HGDP00388_Burusho_R2a

HGDP01225_Mongolian_O2a2b1a1a

HGDP00764_Japanese_O2a1c1a

HGDP00262_Pathan_R1a1a1b2

HGDP01096_Tujia_O2a2b1a1a

HGDP01396_Adygei_R1a1a1b2a2a

HGDP00837_Surui_Q1a2a1a1

HGDP01313_Dai_O1b1a1a1b

HGDP01329_She_O2a2a1a2a1a2

HGDP00407_Burusho_R2a

HGDP01327_She_O1a1a1a1a1

HGDP00122_Hazara_R1b1a1

HGDP00804_Orcadian_R1b1a2a1a2c1b1b1a3

HGDP01299_Uygur_R1b1

HGDP01290_NorthernHan_O2a2b1a1b

HGDP00977_Han_O1a1a1b1

HGDP01013_Karitiana_Q1a2a1a1

HGDP00011_Brahui_R1a1a1b2a1b

HGDP00412_Burusho_O2a2b1a2a1

HGDP00950_Yakut_N1c1a1

HGDP01297_Uygur_R1a1a1b2a1a

HGDP00622_Bedouin_R1a1a1b1a

HGDP00543_PapuanSepik_S1d

HGDP01261_Mozabite_R1b1
HGDP01067_Sardinian_R1b1c2

HGDP00218_Pathan_R2a

HGDP01352_Tu_N1

HGDP00341_Burusho_R1a1a1b2

HGDP01350_Tu_R1a1a1b2a2a

HGDP00141_Makrani_R2a

HGDP01182_Yi_N1

HGDP01379_Basque_R1b1a2a1a2a

HGDP00762_Japanese_O1b2a1

HGDP00548_PapuanHighlands_M1

HGDP01102_Tujia_O2a2b2a1b1

HGDP01331_She_O2a1c1a1a1b

HGDP00076_Balochi_R1a1a1b2a1b

HGDP01377_Basque_R1b1a2a1a2c1f2d2

HGDP00187_Sindhi_R1a1a1b2

HGDP01348_Tu_N1

HGDP01402_Adygei_R1a1a1b1a1b1

HGDP00066_Balochi_R1a1a1b2

HGDP00880_Russian_R1a1a1b1a1a

HGDP00798_Orcadian_R1b1a2a1a1b1a1a

HGDP00108_Hazara_R1b1a1

HGDP01015_Karitiana_Q1a2a1a1

HGDP00553_PapuanHighlands_M1a1

HGDP01357_Basque_R1b1a2a1a2c1f2d2

HGDP00105_Hazara_R1b1a1

HGDP00096_Balochi_R1a1a1b2a1b

HGDP01364_Basque_R1b1a2a1a2a1a1a1a

HGDP00130_Makrani_R1a1a1b2

HGDP01370_Basque_R1b1a2a1a2a1a1a1a1

HGDP00179_Sindhi_R1a1a1b2a1a

HGDP00751_Japanese_O2a1c1b1a1

HGDP00001_Brahui_R1a1a1b2a1b

HGDP00315_Kalash_R1a1a1b2a2a

HGDP00110_Hazara_R1b1a1

HGDP01333_She_O2a2a1a2a1a2

HGDP00815_Han_O2a2b1a1a1a1

HGDP00971_Han_O2a1c1b1a2

HGDP01191_Miao_O1b1a1a1a1a

HGDP01184_Yi_O1b1a1a1b1a

HGDP00849_Surui_Q1a2a1a1

HGDP00251_Pathan_Q1a2

HGDP01271_Mozabite_R1b1

HGDP00364_Burusho_R2a

HGDP01241_Hezhen_O2a2b1a1a

HGDP01060_Pima_Q1a2a1b

HGDP00150_Makrani_R1a1a1b2a1b

HGDP01179_Yi_O1b1a1a1b1b

HGDP00027_Brahui_R1a1a1b2a1b

HGDP01289_NorthernHan_O1b1a1a1a2b

HGDP00100_Hazara_Q1b2

HGDP01187_Yi_O2a1c1a6a1

HGDP01338_Naxi_O2a2b1a1a

HGDP01009_Karitiana_Q1a2a1a1

HGDP00711_Cambodian_O1b1a1a1b1

HGDP00952_Yakut_N1c1a1

HGDP00035_Brahui_R1a1a1b2a1b

HGDP00655_Bougainville_M1b1

HGDP00134_Makrani_L1
-50000 -25000 0



	 44	

 

 
Fig. S14. Demographic model underlying simulations with only one source of archaic 
gene flow. 
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Fig. S15. Comparison of HMM for archaic haplotype detection to other methods. (A) 
Amount and overlaps of Neanderthal segments identified on chromosome 1 of 544 
individuals from the 1000 Genomes Project. (B) Lengths of Neanderthal segments detected 
by the HMM and detected/undetected by other methods. 
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Fig. S16. Demographic model underlying simulations with both Neanderthal and 
Denisovan gene flow. 
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Fig. S17. Amounts of archaic segments identified. (A) Average amount of archaic 
segments identified per genome by geographical region. (B) Average amount of Neanderthal 
and Denisovan segments identified per genome, by population. 
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Fig. S18. Distribution of archaic segments (”strict” criteria) along chromosome 1 by 
geographical region. 

  

A					 Distribution of Neanderthal segments along chromosome 
1 

B      Distribution of Denisova segments along chromosome 1 
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Fig. S19. Divergence of each identified archaic segment to the Vindija Neanderthal and 
Altai Denisovan genomes across geographical regions. (A) Identified Neanderthal 
segments. (B) Identified Denisovan segments. 
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Fig. S20. Schematic showing comparable regions between three archaic haplotypes and 
nucleotide differences. 
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Fig. S21. Population relationships in different classes of genome segments. (A) 
Neighbour-joining tree built from DXY measured in unadmixed segments of the genome, 
rooted by San as outgroup. (B) Neighbour-joining tree built from DXY measured in 
Neanderthal segments in the genome, rooted by midpoint. (C) Neighbour-joining tree built 
from DXY measured in Denisovan segments in the genome, rooted by midpoint. (D) Heatmap 
comparing normalised DXY measured in Neanderthal (top right) vs. unadmixed (bottom left) 
regions of the genome, for west Eurasian populations only. 
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Fig. S22. Absolute divergence (DXY) between all pairs of non-African populations 
measured in Denisovan and Neanderthal segments of the genome. 
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Fig. S23. Examples of Neanderthal haplotype networks. Each circle represents a distinct 
haplotype, labelled by one sample name and coloured by the geographical origins of the 
samples, and the radius is proportional to the number of samples carrying that haplotype. The 
number of bars on the edges equals the number of mutations between haplotypes. Small grey 
circles labelled "mv" represents median vectors reconstructed in the median joining 
algorithm. Dashed lines: alternative links. 

(a) 
 

(b) 
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Fig. S24: Examples of Denisovan haplotype networks. Each circle represents a distinct 
haplotype, labelled by one sample name and coloured by the geographical origins of the 
samples, and the radius is proportional to the number of samples carrying that haplotype. The 
number of bars on the edges equals the number of mutations between haplotypes. Small grey 
circles labelled "mv" represents median vectors reconstructed in the median joining 
algorithm. Dashed lines: alternative links. 
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Fig. S25. Archaic haplotype network ages. (A) The distribution of Neanderthal and 
Denisovan haplotype network ages. (B) Demographic model used in simulations exploring 
different numbers of founding Neanderthal haplotypes. (C) Distribution of haplotype network 
ages estimated from simulations, and true tMRCA. 
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Fig. S26. The number of founding Neanderthal lineages across the genome. A boxplot 
showing the number of founding Neanderthal lineages from 1,000 bootstraps in 100 genomic 
regions randomly selected from the total set of 4,135. 
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Table S1. Overview of populations included in the dataset. The “Lat.” and “Lon.” 
columns indicate the approximate latitude and longitude, respectively, of the geographical 
place of origin of the population. The “Total” column indicates the total number of genome 
sequences from the given population, and the subsequent columns break that number down 
by sequencing source and library type. 

Population Region Lat. Lon. Total 

Sanger 
PCR-
free 

Sanger 
PCR 

SGDP 
PCR-
free 

SGDP 
PCR 

Meyer 
PCR 

Adygei Europe 44 39 16 11 3 2 0 0 
Balochi Central & South Asia 30.5 66.5 24 19 3 2 0 0 
BantuKenya Africa -3 37 11 0 9 2 0 0 
BantuSouthAfrica Africa -25.6 24.25 8 1 3 4 0 0 
Basque Europe 43 0 23 21 0 2 0 0 
Bedouin Middle East 31 35 46 41 3 2 0 0 
BergamoItalian Europe 46 10 12 10 0 2 0 0 
Biaka Africa 4 17 22 3 17 2 0 0 
Bougainville Oceania -6 155 11 5 4 2 0 0 
Brahui Central & South Asia 30.5 66.5 25 20 3 2 0 0 
Burusho Central & South Asia 36.5 74 24 19 3 2 0 0 
Cambodian East Asia 12 105 9 4 3 2 0 0 
Colombian America 3 -68 7 3 2 2 0 0 
Dai East Asia 21 100 9 4 0 3 1 1 
Daur East Asia 48.5 124 9 5 3 1 0 0 
Druze Middle East 32 35 42 37 3 2 0 0 
French Europe 46 2 28 24 0 2 1 1 
Han East Asia 32.3 114 33 29 0 2 1 1 
Hazara Central & South Asia 33.5 70 19 13 4 2 0 0 
Hezhen East Asia 47.5 133.5 9 7 0 2 0 0 
Japanese East Asia 37.5 139 27 25 0 2 0 0 
Kalash Central & South Asia 36 71.5 22 17 3 2 0 0 
Karitiana America -10 -63 12 6 2 2 1 1 
Lahu East Asia 22 100 8 6 0 2 0 0 
Makrani Central & South Asia 26 64 25 20 3 2 0 0 
Mandenka Africa 12 -12 22 5 13 2 1 1 
Maya America 19 -91 21 17 2 2 0 0 
Mbuti Africa 1 29 13 1 7 3 1 1 
Miao East Asia 28 109 10 5 3 2 0 0 
Mongolian East Asia 48.5 119 9 5 2 2 0 0 
Mozabite Middle East 32 3 27 22 3 2 0 0 
Naxi East Asia 26 100 8 6 0 2 0 0 
NorthernHan East Asia 34.7 107.8 10 10 0 0 0 0 
Orcadian Europe 59 -3 15 13 0 2 0 0 
Oroqen East Asia 50.4 126.5 9 7 0 2 0 0 
Palestinian Middle East 32 35 46 40 3 3 0 0 
PapuanHighlands Oceania -6.1 145.4 9 4 2 3 0 0 
PapuanSepik Oceania -4 143 8 2 5 1 0 0 
Pathan Central & South Asia 33.5 70.5 24 19 3 2 0 0 
Pima America 29 -108 13 8 3 2 0 0 
Russian Europe 61 40 25 23 0 2 0 0 
San Africa -21 20 6 1 1 3 1 0 
Sardinian Europe 40 9 28 24 0 2 1 1 
She East Asia 27 119 10 8 0 2 0 0 
Sindhi Central & South Asia 25.5 69 24 19 3 2 0 0 
Surui America -11 -62 8 3 3 2 0 0 
Tu East Asia 36 101 10 8 0 2 0 0 
Tujia East Asia 29 109 9 5 2 2 0 0 
Tuscan Europe 43 11 8 6 0 2 0 0 
Uygur Central & South Asia 44 81 10 5 3 2 0 0 
Xibo East Asia 43.5 81.5 9 4 3 2 0 0 
Yakut East Asia 63 129.5 25 20 3 2 0 0 
Yi East Asia 28 103 10 8 0 2 0 0 
Yoruba Africa 8 5 22 1 17 2 1 1 
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Table S2. Details on the results of the 10x Genomics Chromium sequencing 
experiments. Metrics were calculated by the 10x Genomics Loupe software. 

Sample Population 

Average 
Molecule 
Length 

Linked 
Reads 

per 
Molecule Coverage 

DNA 
fragments 
>20kb (%) 

DNA 
fragments > 
100kb (%) 

Phase 
block N50 

SNPs 
phased 

(%) 
HGDP00460 Biaka 16299 12 33.0 37.8 2.07 1,524,737 98.9 
HGDP00472 Biaka 8258 6 30.2 17.5 2.79 191,984 97.5 
HGDP00562 Druze 8294 6 24.0 12.8 2.12 119,503 97.0 
HGDP00580 Druze 15756 20 31.1 33.3 3.47 417,052 98.7 
HGDP00774 Han 12518 7 31.2 25.8 2.02 222,937 97.7 
HGDP00819 Han 22113 15 35.2 55.8 2.00 601,565 98.7 
HGDP01013 Karitiana 30225 22 32.9 69.6 3.14 596,564 98.3 
HGDP01019 Karitiana 7713 4 23.2 11.3 1.91 81,409 95.7 
HGDP00450 Mbuti 14468 10 35.0 33.5 2.03 990,820 98.7 
HGDP01081 Mbuti 12242 9 32.7 24.4 2.70 560,811 98.6 
HGDP00549 PapuanHighlands 8724 5 25.8 14.3 1.78 126,844 96.8 
HGDP00551 PapuanHighlands 14200 15 31.2 26.0 3.21 206,857 97.7 
HGDP00542 PapuanSepik 11604 6 29.1 24.4 1.81 176,726 97.4 
HGDP00547 PapuanSepik 11157 11 29.0 16.9 3.48 139,899 97.0 
HGDP00224 Pathan 7214 5 27.6 10.7 2.41 81,721 96.9 
HGDP00228 Pathan 7589 5 24.6 10.9 1.89 101,084 97.0 
HGDP01043 Pima 27111 28 33.2 64.7 2.72 591,200 98.6 
HGDP01056 Pima 31234 13 26.7 70.8 3.28 636,630 98.9 
HGDP01029 San 11063 11 29.7 17.7 2.52 406,739 98.5 
HGDP01032 San 22654 20 33.7 56.2 2.78 2,941,155 98.9 
HGDP00670 Sardinian 12126 14 32.9 24.4 2.64 292920 98.4 
HGDP01067 Sardinian 33980 37 35.9 74.2 4.73 1,463,166 98.8 
HGDP00946 Yakut 7376 6 30.4 10.2 2.34 80,637 96.3 
HGDP00954 Yakut 5820 4 23.6 8.94 2.21 40,003 94.9 
HGDP00930 Yoruba 7913 6 30.9 12.0 2.54 129,564 97.7 
HGDP00931 Yoruba 9279 7 32.5 15.3 2.86 256,356 98.3 
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Table S3. Evaluation of statistical phasing accuracy. Switch error rates were measured for 
26 individuals against experimentally phased haplotypes obtained using 10x Genomics linked 
reads for the same individuals. 

Individual Population Region Switch error rate 
with singletons 

Switch error rate 
without singletons 

HGDP00460 Biaka Africa 0.0140 0.0044 
HGDP00472 Biaka Africa 0.0157 0.0064 
HGDP00450 Mbuti Africa 0.0144 0.0051 
HGDP01081 Mbuti Africa 0.0155 0.0052 
HGDP01029 San Africa 0.0378 0.0131 
HGDP01032 San Africa 0.0374 0.0122 
HGDP00930 Yoruba Africa 0.0092 0.0033 
HGDP00931 Yoruba Africa 0.0097 0.0027 
HGDP01013 Karitiana America 0.0086 0.0047 
HGDP01019 Karitiana America 0.0066 0.0052 
HGDP01043 Pima America 0.0076 0.0039 
HGDP01056 Pima America 0.0081 0.0052 
HGDP00224 Pathan Central & South Asia 0.0130 0.0043 
HGDP00228 Pathan Central & South Asia 0.0124 0.0040 
HGDP00774 Han East Asia 0.0156 0.0049 
HGDP00819 Han East Asia 0.0167 0.0054 
HGDP00946 Yakut East Asia 0.0061 0.0033 
HGDP00954 Yakut East Asia 0.0088 0.0046 
HGDP00670 Sardinian Europe 0.0107 0.0033 
HGDP01067 Sardinian Europe 0.0115 0.0038 
HGDP00562 Druze Middle East 0.0067 0.0031 
HGDP00580 Druze Middle East 0.0125 0.0038 
HGDP00549 PapuanHighlands Oceania 0.0237 0.0117 
HGDP00551 PapuanHighlands Oceania 0.0281 0.0120 
HGDP00542 PapuanSepik Oceania 0.0281 0.0119 
HGDP00547 PapuanSepik Oceania 0.0278 0.0115 
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Table S4. Defining regions for analyses of region-specific variants. These were used to 
count variants that were present in the “Ingroup” and absent from the “Outgroup”. Labels in 
all capital letters denote continental-level region labels, while those in lower case letters 
denote populations. The notation “anc(X)” denotes estimates of individual fractions for an 
ancestry component X, as estimated using ADMIXTURE at k=5 on SNPs ascertained as 
polymorphic in archaic genomes. Numbers in parentheses denote the number of individuals 
falling into each set. 

Region label Ingroup Outgroup 

AFRICA AFRICA (n=104) 
!AFRICA & anc(AFRICA) <= 0.01 
(n=627) 

CENTRAL_AFRICA Biaka or Mbuti (n=35) (Biaka or Mbuti) (n=894) 

San San (n=6) !(San or BantuSouthAfrica) (n=915) 

OCEANIA OCEANIA (n=28) !OCEANIA (n=901) 

AMERICA AMERICA & anc(AMERICA) => 0.95 (n=40) !AMERICA (n=868) 

CENTRAL_AMERICA (Pima or Maya) & anc(AMERICA) => 0.95 (n=27) !(Pima or Maya) (n=895) 

SOUTH_AMERICA 
(Colombian or Surui or Karitiana) & anc(AMERICA) 
=> 0.95 (n=27) 

!(Colombian or Surui or Karitiana) 
(n=902) (n=902) 

EUROPE EUROPE (n=155) 
!EUROPE & !(AMERICA & 
anc(WestEurasian) >= 0.01) (n=749) 

EAST_ASIA EAST_ASIA (n=223) 

!EAST_ASIA & !Hazara & !Uygur & 
!(OCEANIA & anc(EastEurasian) >= 
0.01) (n=665) 

MIDDLE_EAST MIDDLE_EAST (n=161) !MIDDLE_EAST (n=768) 

CENTRAL_SOUTH_ASIA 
CENTRAL_SOUTH_ASIA & anc(AFRICA) <= 0.05 
(n=179) 

!CENTRAL_SOUTH_ASIA _ASIA 
(n=732) 

NON_AFRICA_X region X as defined elsewhere 
AFRICA & anc(AFRICA) >= 0.91 
(n=101) 
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Table S5: Encoding of HMM emission types. A value of “0” in the genotype column 
means ancestral allele in all genomes in the panel, while “1” means derived allele in at least 
one genome. 

Genotype Emission type 
Sub-Saharan African panel Sample of interest Archaic panel  
1 0 1 1 
1 1 0 2 
0 1 1 3 
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Table S6. HMM parameters estimated from simulations. 

Initial state distribution (𝜋) 0.9655 0.0345  

Emission matrix (𝐸) 0.1777 0.8208 1.336×10Wi
1.691×10Wi 2.015×10W: 0.9981
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Table S7: Proportion of archaic segments that are still detected after parameter 
changes. 

Parameter 
change 

Neanderthal segments Denisovan segments 

America 
Central & 
South Asia 

East 
Asia Europe 

Middle 
East Oceania America 

Central & 
South Asia 

East 
Asia Europe 

Middle 
East Oceania 

π1 = 0.017 0.9981 0.9954 0.9956 0.9967 0.9984 0.9949 0.9834 0.9671 0.9896 0.9465 0.9476 0.9914 
π1 = 0.067 0.9931 0.9951 0.9932 0.9975 0.9967 0.9939 0.9907 0.9939 0.9971 0.9988 0.9917 0.9922 
t = 1000 0.9931 0.9900 0.9930 0.9912 0.9908 0.9881 0.9741 0.9219 0.9849 0.9412 0.9027 0.9851 

t = 4000 0.9823 0.9884 0.9832 0.9900 0.9868 0.9857 0.9882 0.9829 0.9441 0.9916 0.9769 0.9742 
E0,0 = 0.1954 0.9979 0.9990 0.9981 0.9987 0.9963 0.9980 0.9992 0.9987 0.9995 0.9989 1.0000 0.9991 
E0,1 = 0.9031 0.9912 0.9937 0.9911 0.9908 0.9936 0.9945 0.9495 0.9554 0.9842 0.9667 0.8818 0.9849 
E0,2 = 1.469e-

3 0.9992 0.9986 0.9980 0.9995 0.9992 0.9977 0.9841 0.9940 0.9942 0.9813 0.9970 0.9943 
E0,0 = 0.1599 0.9999 0.9991 0.9983 0.9998 0.9998 0.9972 0.9841 0.9928 0.9937 0.9813 0.9970 0.9935 
E0,1 = 0.7388 0.9902 0.9914 0.9893 0.9919 0.9899 0.9884 0.9767 0.9669 0.9899 0.9477 0.9602 0.9760 
E0,2 = 1.202e-

3 0.9996 0.9995 0.9995 0.9986 0.9971 0.9993 0.9967 0.9994 0.9982 1.0000 1.0000 0.9992 
E1,0 = 1.860e-

4 0.9996 0.9999 0.9994 0.9991 1.0000 0.9998 0.9985 1.0000 0.9981 1.0000 0.9979 0.9981 
E1,1 = 2.216e-

4 1.0000 0.9999 1.0000 0.9995 0.9972 0.9998 1.0000 1.0000 0.9995 1.0000 1.0000 0.9991 
E1,0 = 1.860e-

4 0.9977 0.9990 0.9979 0.9991 0.9989 0.9980 0.9992 0.9987 0.9995 0.9989 1.0000 0.9974 
E1,1 = 2.216e-

4 1.0000 1.0000 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 0.9986 1.0000 1.0000 0.9972 
E1,2 = 0.8983 0.9358 0.9394 0.9531 0.9428 0.9524 0.9328 0.7981 0.5987 0.8425 0.5340 0.3825 0.9116 
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Table S8. Intersection of genomic regions covered by at least two archaic segments 
between non-African populations. Each value represents the probability of finding a 
genomic region in the column label conditioned on finding it in the row label. 

Neanderthal 
Geographic  Total length  Conditional probability to also be found in 
region  (bp)  America  CS Asia  E Asia  Europe  Middle East  Oceania  
America  204886844  -  0.9117  0.9105  0.7235  0.6155  0.3579  
C&S Asia  671828352  0.2780  -  0.6099  0.6458  0.6056  0.2409 
E Asia  525811986  0.3548  0.7793  -  0.5513  0.4900  0.3000  
Europe  482248609  0.3074  0.8997  0.6011  -  0.7981  0.2399 
Middle East  453085016  0.2783  0.8979  0.5687  0.8495  -  0.2261  
Oceania  218296694  0.3359  0.7413  0.7226  0.5300  0.4693  - 
        
Denisovan 
Geographic  Total length  Conditional probability to also be found in 
region  (bp)  America  CS Asia  E Asia  Europe  Middle East  Oceania  
America  13333796  -  0.5761  0.8382  0.3202  0.2470  0.2309  
C&S Asia  55284712  0.1389  -  0.3665  0.2106  0.1773  0.1980 
E Asia  56280344  0.1986  0.3600  -  0.1330  0.0852  0.1878  
Europe  14067884  0.3035  0.8276  0.5321  -  0.6230  0.2146 
Middle East  13893642  0.2370  0.7054  0.3451  0.6308  -  0.2091  
Oceania  190235182  0.0162  0.0575  0.0556  0.0159  0.0153  - 
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Table S9. Genomic regions with more than 20 founding Neanderthal haplotypes. 

Chr Start End #Haplotypes 
#Unique 
haplotypes Rho sd 

Rho 
(years) 

sd 
(years) 

9 110937947 111009555 220 75 6.059 3.814 223447.6 140658.6 
6 66848428 66915134 163 68 2.178 0.349 89369.29 14324.72 

12 113841761 113933611 150 85 2.94 0.316 80828.57 8698.694 
5 58495484 58599651 198 99 2.581 0.404 78918.59 12363.74 
1 217246438 217327394 200 89 2.325 0.593 74454.43 18987.48 

19 56087294 56138132 228 67 1.110 0.104 70633.69 6593.898 
10 62941526 62993549 209 52 1.187 0.071 70207.82 4177.36 
12 114080296 114130307 204 69 1.304 0.089 66588.11 4520.688 

2 13827358 13919411 125 73 2.136 0.165 60264.87 4664.095 
1 216557045 216647205 218 85 2.147 0.155 58608.5 4234.904 
1 32911081 32992108 211 68 1.422 0.268 57411.51 10832.91 
4 28482612 28545486 191 64 1.277 0.080 54515.13 3432.053 

12 20849814 20933980 151 63 1.709 0.217 52310.35 6651.919 
9 126565708 126646783 190 66 1.389 0.162 46613.15 5425.191 
1 212466385 212548707 196 78 1.301 0.044 43196.05 1458.018 
9 94515802 94565893 148 42 0.534 0.011 38530.75 781.0288 
1 33403459 33454985 263 63 0.669 0.025 34713.19 1273.397 
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Table S10. The number of completely geographically separated haplotype network 
between pairs of regions out of the total number of comparable networks. 

Neanderthal haplotype networks, separated / total 
 Central/South Asia  East Asia  Europe  Middle East  Oceania  
America  254 / 862  184 / 878  221 / 618  245 / 506  159 / 263  
Central/South Asia  -  228 / 2064  133 / 2190  139 / 2032  261 / 690  
East Asia  -  -  338 / 1356  429 / 1162  187 / 714  
Europe  -  -  -  81 / 1932  249 / 448  
Middle East  -  -  -  -  230 / 393  
      
    

Denisovan haplotype networks, separated / total 
 Central/South Asia  East Asia  Europe  Middle East  Oceania  
America  6 / 36  8 / 59  4 / 15  3 / 9  10 / 12  
Central/South Asia  -  4 / 88  3 / 42  3 / 32  37 / 39  
East Asia  -  -  5 / 27  5 / 14  35 / 40  
Europe  -  -  -  2 / 31  7 / 9  
Middle East  -  -  -  -  6 / 8  
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Table S11. p-values from Fisher’s exact test on different distributions of 
separated/connected networks in Neanderthal vs. Denisovan haplotypes between pairs 
of regions. 

 Central&South Asia  East Asia  Europe  Middle East  Oceania  
America  0.1320  0.2419  0.5908  0.5067  0.1375  
Central&South Asia  -  0.0534  0.7398  0.4802  3.075×10-13  
East Asia  -  -  0.6523  1  5.207×10-15  
Europe  -  -  -  0.3801  0.3100  
Middle East  -  -  -  -  0.4793  
      

 


